Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T23:29:25.220Z Has data issue: false hasContentIssue false

Clay minerals as indicators of diagenetic and anchimetamorphic grade in an overthrust belt, External Domain of southern Canadian Appalachians

Published online by Cambridge University Press:  09 July 2018

C. Yang
Affiliation:
Department of Geological Sciences, McGill University, 3450 University Street, Montreal, Quebec, H3A 2A7, Canada
R. Hesse
Affiliation:
Department of Geological Sciences, McGill University, 3450 University Street, Montreal, Quebec, H3A 2A7, Canada

Abstract

Lower Palaeozoic shales and slates in the External Domain of the southern Canadian Appalachians are composed predominantly of illite and chlorite with minor occurrences of I-S mixed-layer minerals (restricted to samples with illite crystallinity, IC > 0·62°Δ2Θ) and paragonite (restricted to samples with IC < 0·42°Δ2Θ). Inverted diagenesis has occurred in the NW part of the Chaudière Nappe, indicating pre-orogenic deep burial diagenesis at the original depositional site, whereas to the SE, the diagenetic pattern was affected by synorogenic heating. Within the east-dipping thrust-fold belt and the St Lawrence Lowlands, increasing grade towards the S suggests a gradual southward increase in post-tectonic burial depth. Narrow (3–5 km) thermal haloes around the Cretaceous Monteregian intrusions show limited effects on the country rocks.

The percentage of 2M1 mica polytypes and bo increase with decreasing IC. Chlorite crystallinity (CC) increases with increasing IC. Good correlations between IC, %2M1, CC and bo of micas indicate that these parameters are reliable monitors of high-grade diagenesis and low-grade metamorphism in clay-rich sedimentary rocks. IC and CC improve with increasing grain size, illustrating the effect of grain size on IC and CC. Organic material affects IC more strongly in strata with lower permeability than in those with higher permeability. In the diagenetic zone, glycolation does not uniformly produce a narrowing of the 10 Å illite peak, but may also broaden it by up to 15%, probably due to the presence of Kalkberg-type mixed-layers.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, J.H. & Buseck, P.R. (1990) Layer-stacking sequences and structure disorder in mixed-layer illite/smectite: image simulations and HRTEM imaging. Am. Miner., 75, 267–275.Google Scholar
Alonso, O.E. & Brime, C. (1990) Mineralogy, geochemistry, and origin of the underclays of the central coal basin, Asturias, Spain. Clays Clay Miner., 38, 265–276.Google Scholar
Angevine, C.L. & Turcotte, D.L. (1983) Oil generation in overthrust belts. Bull. Am. Ass. Petrol. Geol., 67, 235241.Google Scholar
Eberl, D.D., Srodon, J., Kralik, M., Taylor, B.E. & Peterman, Z.E. (1990) Ostwald ripening of clays and metamorphic minerals. Science, 248, 474477.Google Scholar
Eberl, D.D., Srodon, J., Lee, M., Nadeau, P.H. & Northrop, H.R. (1987) Sericite from the Silverton caldera, Colorado: correlation among structure, composition, origin, and particle thickness. Am. Miner., 72, 914–934.Google Scholar
Edman, J.D. & Surdam, R.C. (1984) Influence of overthrusting on maturation of hydrocarbons in Phosphoria Formation, Wyoming-Utah Overthrust Belt. Bull. Am. Petrol. Geol, 68, 1803–1817.Google Scholar
Foland, K.A., Gilbert, L.A., Sebring, C.A. & Chen, J. (1986) 40Ar/39Ar ages for plutons of the Monteregian Hills, Quebec: Evidence for a single episode of Cretaceous magmatism. Bull. Geol. Soc. Am., 97, 966–974.Google Scholar
Frey, M. (1969) A mixed layer paragonite/phengite of low-grade metamorphic origin. Contr. Min. Pet., 24, 63–65.CrossRefGoogle Scholar
Frey, M. (1970) The step from diagenesis to metamorphism in pelitic rocks during Alpine orogenesis. Sedimentology, 15, 261–279.CrossRefGoogle Scholar
Frey, M. (1974) Alpine metamorphism of pelitic and marly rocks of the central Alps. Schweiz. Mineral. Petrogr. Mitt., 54, 489–506.Google Scholar
Frey, M. (1978) Progressive low-grade metamorphism of a black shale formation, central Swiss Alps, with special reference to pyrophyllite and margarite bearing assemblages. J. Pet., 19, 95–135.Google Scholar
Frey, M. (1987) Very low-grade metamorphism of clastic sedimentary rocks. Pp. 9-57 in: Low Temperature Metamorphism(M. Frey, editor). Blackie & Sons, Glasgow.Google Scholar
Frey, M., Bucher, K., Frank, H. & Mullis, J. (1980a) Alpine metamorphism along the Geotraverse Basel-Chiasso–;a review. Eclogae geol. Helv., 73, 527–546.Google Scholar
Frey, M., Teichmuller, M., Teichmuller, R., MullisJ., Kunzi, B., Breitschmid, A., Gruner, U. & Schwizer, B. (1980b) Very low-grade metamorphism in external parts of the central Alps: Illite crystallinity, coal rank and fluid inclusion data. Eclogae. geol. Helv., 73, 173–203.Google Scholar
Globensky, Y. (1987) Geologie des Basses-Terres du Saint-Laurent. Ministere de I'Énergie et des Ressources, Québec.MM 85-02.Google Scholar
Guidoiti, C.V., Sassi, F.P. & Blencoe, J.G. (1989) Compositional controls on the aand bcell dimensions of 21 muscovite. Eur. J. Min., 1, 71–84.Google Scholar
Heroux, Y., Chagnon, A. & Bertrand, R. (1979) Compilation and correlation of major thermal maturation indicators. Bull. Am. Ass. Petrol. Geol., 63, 2128–2144.Google Scholar
Heroux, Y. & Tasse, N. (1990) Organic matter alteration in an early Paleozoic basin: zonation around mineral showings compared to that around intrusions, St Lawrence Lowlands, Quebec, Canada. Bull. Geol. Soc. Am., 102, 877–888.Google Scholar
Hesse, R. & Dalton, E. (1991) Diagenetic and low-grade metamorphic terrains of Gaspe-Peninsuia related to geologic structure of the Taconic and Acadian orogenic belts, Quebec Appalachians. J. Met. Geol.(in press).Google Scholar
Hoffman, J. & Hower, J. (1979) Clay mineral assemblages as low grade metamorphic geothermometers: Application to the thrust faulted Disturbed belt of Montana, USA. Soc. Econ. Pal. Min. Spec. Publ., 26, 55–79.Google Scholar
Hower, J.C. & Mowatt, T.C. (1966) The mineralogy of illites and mixed-layer illite-montmorillonites. Am. Miner., 51, 825–854.Google Scholar
Hunziker, J.C., Frey, M., Clauer, N., Dallmeyer, R.D., Friedrichsen, H., Flehmig, W., Hochstrasser, K., Roggwiler, P. & Schwander, H. (1986) The evolution of illite to muscovite: mineralogica and isotopic data from the Glarus Alps, Switzerland. Contr. Min. Pet., 92, 157–180.Google Scholar
INRS DP-739. (1980) Etude de diagenese minerale et organique des sondages shell Saint-Armand-Ouest No 1 Soquip Saint-Thomas-D'aquin. Ministere de VEnergie et des Ressources, Quebec. Google Scholar
Islam, S., Hesse, R. & Chagnon, A. (1982) Zonation of diagenesis and low-grade metamorphism in Cambro-Ordovician flysch of Gaspe Peninsula, Quebec Appalachians. Can. Miner., 20, 155–167.Google Scholar
Jahren, J.S. (1991) Evidence of Ostwald ripening related recrystallization of diagenetic chlorites from reservoir rocks offshore Norway. Clay Miner., 26, 169–170.Google Scholar
Jiang, W. & Peacor, D.R. (1990) Parallel diagenesis/metamorphism of dioctahedral illite and trioctahedral chloritic minerals in pelitic rocks of the Gaspe Peninsula, Quebec. Geol. Soc. Am. Abstr., 22, A258A259.Google Scholar
Katz, B.J., Pheifer, R.N. & Schunk, D.J. (1988) Interpretation of discontinuous vitrinite reflectance profiles. Bull. Am. Petrol. Geol, 72, 926–931.Google Scholar
Kisch, H.J. (1983) Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks. Pp. 289-493 in: Diagenesis in Sediments and Sedimentary Rocks(Larsen, G. & Chilingar, G.V., editors). Developments in Sedimentology 25B, Elsevier, Amsterdam.Google Scholar
Kisch, H.J. (1990) Calibration of the chizonde: a critical comparison of illite "crystalling " Scales used for definition. J. Met. Geol. 8, 3146 Google Scholar
Kisch, H.J. (1991) Illite “crystallinity”:recommendations on sample preparation, X-ray diffraction settings and inter-laboratory samples. J. Met. Geol.(in press).Google Scholar
Kisch, H.J. & Frey, M. (1987) Appendix: Effect of sample preparation on the measured 10 A peak width of illite (illite tlcrystallinity,,) Pp. 301304 in: Low Temperature Metamorphism (Frey, M., editor). Blackie & Sons, Glasgow.Google Scholar
Kübler, B. (1967) La cristallinite de les zones tout a fait superieurs du métamorphisme. Colloque sur les "Etages tectoniques", Neuchatel, 105122.Google Scholar
Kübler, B. (1968) Evaluation quantitative du metamorphisme par le cristallinité de Tillite. Bull. Centre Rech. Pau-SNPA,, 2, 385–397.Google Scholar
Kübler, B. (1984) Les indicateurs des transformations physiques et chimiques dans la diagenese, temperarure et calorimetrie. Pp. 489596 in: Themometrie et Barometrie Giologiques(M. Lagache, editor). Soc. Fran9, Miner. Crist., Paris.Google Scholar
Kübler, B., Héroux, Y., Pittion, J.L., Charollais, J. & Weidman, M. (1979) Sur le pouvoir reflecteur de la vitrinite dans quelques rochs du Jura, de la molasse et des nappes prealpines, helvetiques (Suisse occidentale et Haute-Savoie). Eclogae Geol. Helv., 72, 347–373.Google Scholar
Lee, J.H., Peacor, D.R., Lewis, D.D. & Wintsch, R.P. (1985) Chlorite-illite/muscovite interlayered and interstratified crystals: A TEM/STEM study. Contr. Min. Pet., 88, 372–385.Google Scholar
Legall, F.D., Barnes, C.R. & Macqueen, R.W. (1981) Thermal maturation, burial history and hotspot development, Palaeozoic strate of southern Ontario-Quebec, from conodont and acritarch colour alteration studies. Bull. Can. Petrol. Geol., 29, 492–539.Google Scholar
Levine, J.R., Hesse, R. & Samson, I.M. (1991) Occurrence of fracture-hosted impsonite and petroleum fluid inclusions, Quebec City region, Canada. Bull. Am. Ass. Petrol. Geol., 75, 139–155.Google Scholar
Maxwell, D.T. & Hower, J. (1976) High-grade diagenesis and low-grade metamorphism of illite in the Precambrian Belt series. Am. Miner., 52, 843–857.Google Scholar
Nowlan, G.S. & Barnes, C.R. (1987) Thermal maturation of Palaeozoic strata in eastern Canada from conodont colour alteration index (CAI) data, with implications for burial history, tectonic evolution, hotspot tracks and hydrocarbon exploration. Bull. Geol. Surv. Can., 367, 711 Google Scholar
Ogunyomi, O., Hesse, R. & Héroux, Y. (1980) Pre-orogenic and synorogenic diagenesis and anchimetamorphism in Lower Palaeozoic continental margin sequences of the Northern Appalachians in and around Quebec City, Canada. Bull. Can. Petrol. Geol., 28, 559–577.Google Scholar
Oxburgh, E.R. & Turcotte, D.L. (1974) Thermal gradients and regional metamorphism in overthrust terrains with special reference to the eastern Alps. Schweiz. Miner. Petrogr. Mitt., 54, 641–662.Google Scholar
Padan, A., Kisch, H.J. & Shagam, R. (1982) Use of lattice parameter bo of dioctahedral illite/muscovite for the characterization of P/T gradients of incipient metamorphism. Contr. Min. Pet., 79, 85–95.Google Scholar
Quinlan, G. & Beaumont, C. (1984) Appalachian over-thrusting, lithospheric flexure and the development of Palaeozoic stratigraphy in the eastern interior region, U.S.A. Can. J. Earth Sci., 21, 973–996.Google Scholar
Reutter, K.J., TeichmOller, M., Teichmuller, R. & Zanzucchi, G. (1978) Coalification studies in the Northern Apennines and paleogeothermal implications. Pp. 261-265 in: Alps, Apennines(H. Hellenides Closs, D. Roeder & K. Schmidt, editors). Inter-Union Comm. Geodynamics, Sci. Rept., 38, 261–265.Google Scholar
Reynolds, R.C. Jr. (1963) Potassium-rubidium ratios and polymorphism in illites and microclines from the clay size fraction of Proterozoic carbonate rocks. Geochim. Cosmochim. Acta., 27, 10971112.Google Scholar
Reynolds, R.C. Jr. & Hower, J. (1970) The nature of interlayering in mixed-layer illite-montmorillonite. Clays Clay Miner., 18, 25–36.Google Scholar
Robinson, D., Warr, L.N. & Bevins, R.E. (1990) The illite "crystallinity" technique: a critical appraisal of its precision. J. Met. Geol., 8, 333–344.Google Scholar
Sikander, A.H. & Prmon, J.L. (1978) Reflectance studies on organic matter in Lower Paleozoic sediments of Quebec. Bull. Can. Petrol. Geol., 26, 132–151.Google Scholar
St. Julien, P. & Hubert, C. (1975) Evolution of the Taconian Orogeny in the Quebec Appalachians. Am. J. Sci., 275-A, 337362.Google Scholar
St. Julien, P. & Slivitzky, A. (1987) Compilation géologique de la region de TEstrie-Beauce. Ministere de VEnergie et des Ressources, Québec, MM 85-04.Google Scholar
Velde, B. & Hower, J. (1963) Petrological significance of illite polymorphism in Palaeozoic sedimentary rocks. Am. Miner., 48, 1239–1254.Google Scholar
Weaver, C.E. (1984) Shale-slate metamorphism in Southern Appalachians. Pp. 8386 in: Developments in Petrology, 10, Elsevier, Amsterdam.Google Scholar
Williams-Jones, A.E. (1981) Thermal metamorphism of siliceous limestone in the aureole of Mount Royal, Quebec. Am. J. Sci., 281, 673–696.Google Scholar
Yang, C. (1991) Diagenesis and anchimetamorphism in a Lower Palaeozoic overthrust belt, external domain of southern Canadian Appalachians.PhD thesis, McGill Univ., Canada.Google Scholar