Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T08:37:21.366Z Has data issue: false hasContentIssue false

Clay mineral reactions in an active geothermal area (Mt. Amiata, southern Tuscany, Italy)

Published online by Cambridge University Press:  09 July 2018

S. Battaglia*
Affiliation:
Istituto di Geoscienze e Georisorse, Italian National Research Council, Via Moruzzi 1, 56124, Pisa, Italy
F. Gherardi
Affiliation:
Istituto di Geoscienze e Georisorse, Italian National Research Council, Via Moruzzi 1, 56124, Pisa, Italy
G. Gianelli
Affiliation:
Istituto di Geoscienze e Georisorse, Italian National Research Council, Via Moruzzi 1, 56124, Pisa, Italy
L. Leoni
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, 56126, Pisa, Italy
F. Origlia
Affiliation:
Istituto di Geoscienze e Georisorse, Italian National Research Council, Via Moruzzi 1, 56124, Pisa, Italy

Abstract

This study characterizes the effects of fluid migration into a predominantly shale cover which seals the active geothermal system of Mt. Amiata (Tuscany, Italy). During Alpine orogenesis the shale unit was affected by regional metamorphism at the limit of the diagenesis-anchizone. Subsequently, the phyllosilicate clay minerals of the shales underwent significant alteration at diagenetic temperatures (175±25ºC as determined by the geochemical model) by the pervasive circulation of fluids activated by the geothermal field. The overall mineralogical assemblages indicate that the main transformations consisted mostly of destabilization of illite and formation of kaolinite together with large amounts of I-S mixed layers, with higher smectite content and decreased Reichweite I-S ordering (from R3 to R1) with respect to the original, unaltered phases. Application of computer modelling indicates that the circulation of CO2-rich geothermal fluids into the shale unit was responsible for the observed phyllosilicate clay mineral transformations.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aja, S.U. (2002) The stability of Fe-Mg chlorites in hydrothermal solutions: II. Thermodynamic properties. Clays and Clay Minerals, 50, 591600.Google Scholar
Árkai, P. (1991) Chlorite crystallinity: an empirical approach and correlation with illite crystallinity, coal rank and mineral facies as exemplified by Palaeozoic and Mesozoic rocks of northeast Hungary. Journal of Metamorphic Geology, 9, 723734.Google Scholar
Árkai, P. (2002) Phyllo silicates in very low-grade metamorphism: Transformation to micas. Pp. 463478 in: Micas: Crystal Chemistry and Metamorphic Petrology (Mottana, A., Sassi, F.P., Thompson, J.B. & Guggenheim, S., editors). Reviews in Mineralogy 46, Mineralogical Society of America, Washington DC.Google Scholar
Árkai, P., Sassi, P.P. & Sassi, R. (1995) Simultaneous measurement of chlorite and illite crystallinity: a reliable tool for monitoring low- to very low-grade metamorphism in metapelites. —A case study from the Southern Alps (NE Italy). European Journal of Mineralogy, 7, 11151128.Google Scholar
Atkinson, P.G., Celati, R., Corsi, P., Kucuk, F. & Ramey, H.J. Jr. (1978) Thermodynamic behaviour of the Bagnore geothermal field. Geothermics, 7, 185208.Google Scholar
Atkinson, P.G., Celati, R., Corsi, P. & Kucuk, F. (1980) Behaviour of the Bagnore steam/CO2 geothermal reservoir, Italy. Society of PetroleumEngineers Journal, 7132, 228238.Google Scholar
Augustithis, S.S. (1983) Leaching and Diffusion in Rocks and their Weathering Products. Theophrastus Publications S.A., Athens, Greece.Google Scholar
Bagnoli, G., Gianelli, G., Puxeddu, M., Rau, A., Squarci, P. & Tongiorgi, M. (1980) A tentative stratigraphic reconstruction of the Tuscan Paleozoic basement. Memorie della Società Geologica Italiana, 20, 99116.Google Scholar
Barberi, F., Buonasorte, G., Cioni, R., Fiordelisi, A., Foresi, L., Iaccarino, S., Laurenzi, M.A., Sbrana, A., Vernia, L. & Villa, I.M. (1994) Plio-Pleistocene geological evolution of the geothermal area of Tuscany and Latium. Memorie Descrittive della Carta Geologica d Italia, XLIX, Roma.Google Scholar
Battaglia, S., Leoni, L. & Sartori, F. (2004) The Kübler index in late diagenetic to low-grade metamorphic pelites: a critical comparison of data from 10 Å and 5 Å peaks. Clays and Clay Minerals, 52, 85105.CrossRefGoogle Scholar
Bear, J. (1972) Dynamics of Fluids in Porous Media. American Elsevier Publishing Co., New York.Google Scholar
Beaufort, D., Papapanagiotou, P., Fujimoto, K., Patrier, P. & Kasai, K. (1995) High temperature smectites in active geothermal systems. Pp. 493496 in: Water- Rock Interaction (Kharaka, Y.K. & Chudaev, O.V., editors). Balkema, Rotterdam, The Netherlands.Google Scholar
Berger, G., Schott, J. & Loubet, M. (1987) Fundamental processes controlling the first stage of alteration of a basalt glass by seawater: an experimental study between 200° and 320°C. Earth and Planetary Science Letters, 84, 431445.Google Scholar
Bertini, G., Cappetti, G., Dini, I. & Lovari, F. (1995) Deep drilling results and updating of geothermal knowledge of the Monte Amiata area. Pp. 12831286 in: Proceedings World Geothermal Congress, 2, Florence, Italy.Google Scholar
Bigazzi, G., Bonadonna, F.P., Ghezzo, C., Giuliani, O., Radicati di Brozolo, F. & Rita, F. (1981) Geochronological study of the Mt. Amiata lavas (Central Italy). Bulletin of Volcanology, 44, 455465.CrossRefGoogle Scholar
Calamai, A., Cataldi, R., Squarci, P. & Taffi, L. (1970) Geology, geophysics and hydrology of the Monte Amiata Geothermal Fields (maps and comments). Geothermics, Special Issue, 1-9.Google Scholar
Cathelineau, M. (1988) Cation site occupancy in chlorite and illites as a function of temperature. Clay Minerals, 23, 471485.Google Scholar
Cathelineau, M. & Nieva, D. (1985) A chlorite solid solution geothermometer. The Los Azufres (Mexico) geothermal system. Contribution Mineralogy and Petrology, 91, 235244.Google Scholar
Cavarretta, G., Gianelli, G. & Puxeddu, M. (1982) Formation of authigenic minerals and their use as indicators of physico-chemical parameters of the fluid in the Larderello-Travale geothermal field. Economic Geology, 77, 10711084.Google Scholar
Cho, M., Liou, J.G. & Bird, D.K. (1988) Prograde phase relations in the State 2-14 well metasandstones, SaltonSea geothermal field, California. Journal of Geophysical Research, 93, 1308113103.Google Scholar
Cortesogno, L. & Haccard, D. (1984) Note illustrative alla carta Geologica della zona Sestri-Voltaggio. Memorie della Società Geologica Italiana, 28, 115150.Google Scholar
Cortesogno, L., Galbiati, B. & Principi G (1987) Note alla ‘Carta Geologica delle ofioliti del Bracco’ e ricostruzione della paleogeografia giurassicocretacica. Ofioliti, 12, 261342.Google Scholar
Decandia, F.A. & Elter, P. (1972) La ‘zona’ ofiolitifera del Bracco nel settore compreso tra Levanto e la Val Graveglia (Appennino Ligure). Memorie della Società Geologica Italiana, 11, 503530.Google Scholar
Duba, D. & Williams-Jones, A.E. (1983) The application of illite crystallinity, organic matter reflectance, and isotopic techniques to mineral exploration: a case study in southwestern Gaspé, Quebec. Economic Geology, 78, 13501363.Google Scholar
Franceschelli, M., Pandeli, E., Puxeddu, M., Porcu, R. & Fadda, S. (1994) Illite crystallinity in pelitic and marly rocks from the Northern Apennines (southern Tuscany and Umbria, Italy). Neues Jahrbuch für Mineralogie Monatshefte, 1994, 367384.Google Scholar
Franzini, M., Leoni, L. & Saitta, M. (1975) Revisione di una metodologia analitica per fluorescenza-X, basata sulla correzione completa degli effetti di matrice. Rendiconti della Società Italiana di Mineralogia e Petrologia, 31, 365378.Google Scholar
Frey, M. (1987) Very low-grade metamorphism of clastic rocks. In: Low Temperature Metamorphism (Frey, M., editor). Blackie and Son Ltd, Glasgow.Google Scholar
Frey, M. & Robinson, D. (1999) Low-Grade Metamorphism. Blackwell Science, Oxford, UK.Google Scholar
Gianelli, G., Mekuria N, Battaglia, S., Chersicla, A., Garofano, P., Ruggeri, G., Manganelli, M. & Gebregziabher, Z. (1998) Water-rock interaction and hydrothermal mineral equilibria in the Tendaho geothermal system. Journal of Volcanology and Geothermal Research, 86, 253276.Google Scholar
Giolito, C. (2005) Geochemical evolution of the crustal fluids in the hydrothermal system of Mt. Amiata (Central Italy). Doctoral (PhD) thesis, University of Florence, Italy.Google Scholar
Hajash, A. (1975) Hydrothermal processes along Mid- Ocean Ridges: an experimental investigation. Contribution to Mineralogy and Petrology, 53, 205226.Google Scholar
Harvey, C.C. & Browne, P.R.L. (1991) Mixed-layer clay geothermometry in the Wairakei geothermal field, New Zealand. Clays and Clay Minerals, 39, 614621.Google Scholar
Helgeson, H.C., Kirkham, D.H. & Flowers, D.C. (1981) Theoretical prediction of the thermodynamic behaviour of aqueous electrolytes at high pressures and temperatures: IV Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 60° C and 5 kb. American Journal of Science, 281, 12491516.Google Scholar
Hesse, R. & Dalton, E. (1991) Diagenetic and low grade metamorphic Terranes of Gaspe Peninsula related to geological structure of the Taconian and Acadian orogenic belts, Quebec Appalachians. Journal of Metamorphic Geology, 9, 775779.Google Scholar
Hildebrand, A., Schlömer, S. & Krooss, B.M. (2002) Gas breakthrough experiments on fine-grained sedimentary rocks. Geofluids, 2, 323.Google Scholar
Hoogerduijing Strating, E.H. (1991) The evolution of the Piemonte-Ligurian ocean. A structural study of ophiolite complexes in Liguria (NW Italy). PhD dissertation, Utrecht University, The Netherlands.Google Scholar
Hoagland, J.R. & Elders, W.A. (1978) Hydrothermal mineralogy and isotopic geochemistry in the Cerro Prieto Geothermal field, Mexico. I. Hydrothermal mineral zonation. Geothermal Resources Council, Transactions, 2, 283-286.Google Scholar
Holland, T., Baker, J. & Powell, R. (1998) Mixing properties and activity-composition relationships of chlorites in the system MgO-FeO-Al2O3-SiO2-H2O. European Journal of Mineralogy, 10, 395406.Google Scholar
Inoue, A., Meunier, A. & Beaufort, D. (2004) Illitesmectite mixed-layer minerals in felsic volcaniclastic rocks from drill cores, Kakkonda, Japan. Clays and Clay Minerals, 52, 6684.Google Scholar
Kisch, H.J. (1987) Correlation between indicators of very-low-grade metamorphism. Pp. 227300 in: Low Temperature Metamorphism (Frey, M., editor). Blackie & Son, Glasgow, UK.Google Scholar
Krumm, S. (1996) WINFIT 1.2: version of November 1966 (The Erlangen geological and mineralogical software collection) of ‘WINFIT 1.0: a public domain program for interactive profile-analysis under WINDOWS’. XIII Conference on Clay Mineralogy and Petrology, Praha, 1994. Acta Universitatis Carolinae Geologica, 38, 253261.Google Scholar
Kübler, B. (1984) Les indicateurs des transformations physiques et chimiques dans la diagenèse. Pp. 489596 in: Thermomètrie et Barométrie géologiques (Lagache, M., editor). Société Française de Minéralogie et Cristallographie, Paris.Google Scholar
Kübler, B. (1990) Cristallinité de l’illite et mixed-layers: brève révision. Schweizerische Mineralogische und Petrographische Mitteilungen, 70, 8993.Google Scholar
Lasaga, A.C. (1984) Chemical kinetics of water-rock interactions. Journal of Geophysical Research, 89, 40094025.Google Scholar
Laurenzi, M.A. & Villa, I.M. (1991) The age of the early volcanic activity at Monte Amiata volcano, Tuscany: evidence for a paleomagnetic reversal at 300 ka p. Plinius, 6, 160161.Google Scholar
Leoni, L., Sartori, F. & Saitta, M. (1989) Analisi mineralogica quantitativa di rocce e sedimenti pelitici mediante combinazione di dati diffrattometrici e dati chimici. Rendiconti della Società Italiana di Mineralogia e Petrologia, 43, 743756.Google Scholar
Leoni, L., Marroni, M., Sartori, F. & Tamponi, M. (1996) Metamorphic grade in metapelites of the Internal Liguride Units (Northern Apennines, Italy). European Journal of Mineralogy, 8, 3550.Google Scholar
Leoni, L., Sartori, F. & Tamponi, M. (1998) Compositional variation in K-white micas and chlorites coexisting in Al-saturated metapelites under late diagenetic to low-grade metamorphic conditions (Internal Liguride Units, Northern Apennines, Italy). European Journal of Mineralogy, 10, 13211339.Google Scholar
Liotta, D. (1996) Analisi del settore Centro-Meridionale del Bacino Pliocenico di Radicofani (Toscana Meridionale). Bollettino della Società Geologica Italiana, 115, 115143.Google Scholar
Lucchetti, G., Cabella, R. & Cortesegno, L. (1990) Pumpellyites and coexisting minerals in different low-grade metamorphic facies of Liguria, Italy. Journal of Metamorphic Geology, 8, 539550 Google Scholar
Marschall, P., Horseman, S. & Gimmi, T. (2005) Characterisation of gas transport properties of the Opalinus Clay, a potential host rock formation for radiactive waste disposal. Oil and Gas Science Technology, 60, 121139.Google Scholar
Mas, A., Guisseau, D., Patrier Mas, P., Beaufort, D., Genter, A., Sanjuan, B. & Girard, J.P. (2006) Clay minerals related to the geothermal activity of the Bouillant geothermal field (Guadeloupe). Journal of Volcanology and Geothermal Research, 158, 380400.Google Scholar
Mazzuoli, R. & Pratesi, M. (1963) Rilevamento e studio chimico petrografico delle rocce vulcaniche del Monte Amiata. Atti Società Toscana Scienze Naturali, Serie A, 70, 355429.Google Scholar
McDowell, S.D. & Elders, W.A. (1980) Authigenic layer silicate minerals in borehole Elmore 1, Salton Sea geothermal field, California, USA. Contributions to Mineralogy and Petrology, 74, 293310.CrossRefGoogle Scholar
Merriman, R.J. & Peacor, D.R. (1999) Very low-grade metapelites: mineralogy, microfabrics and measuring reaction progress. Pp. 1060 in: Low-Grade Metamorphism (Frey, M. & Robinson, D., editors). Blackwell Science, Oxford, UK.Google Scholar
Moore, M.D. & Reynolds, R.C. (1997) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford-New York.Google Scholar
Mottl, M. & Holland, H. (1978) Chemical exchange during hydrothermal alteration of basalt by seawater- I. Experimental results of major and minor components of seawater. Geochimica et Cosmochimica Acta, 42, 11031115.Google Scholar
Muffer, P.J.L. & White, D.E. (1969) Active metamorphism of upper Cenozoic sediments in the Salton Sea geothermal field at the Salton Trough, southeastern California. Geological Society of America Bulletin, 80, 157182.Google Scholar
Nieto, F., Pilar Mata, M., Bauluz, B., Giorgetti, G., Árkai, P. & Peacor, D.R. (2005) Retrograde diagenesis, a widespread process on a regional scale. Clay Minerals, 40, 93104.Google Scholar
Palandri, J.L. & Kharaka, Y.K. (2004) A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modelling. US Geological Survey Open File Report 2004-1068, 1-64.Google Scholar
Pandeli, E., Puxeddu, M., Gianelli, G., Bertini G & Castellucci, P. (1988) Paleozoic sequences crossed by deep drillings in the Monte Amiata geothermal region (Italy). Bollettino Società Geologica Italiana, 107, 593606.Google Scholar
Patrier, P., Papapanagiotou, P., Beaufort, D., Traineau H, Bril, H. & Rojas, J. (1996) Role of permeability versus temperature distribution of the fine (<0.2 μm) clay fraction in the Chipilapa geothermal system (El Salvador, Central America). Journal of Volcanology and Geothermal Research, 72, 101120.Google Scholar
Pruess, K., Oldenburg, C. & Moridis G (1999) TOUGH2 User's guide, Version 2.0. Lawrence Berkeley National Laboratory Report LBNL-43134, Berkeley, California, USA.Google Scholar
Schiffman, P. & Fridleifsson, G.O. (1991) The smectite-chlorite transition in drillhole NJ-15, Nesjavellir geothermal field, Iceland: XRD, BSE and electron microprobe investigations. Journal of Metamorphic Geology, 9, 679696.Google Scholar
Schiffman, P., Elders, T.M., Williams, A.E., McDowell, S.D. & Bird, D.K. (1984) Active metasomatism in the Cerro Prieto geothermal system, Baja California, Mexico: a telescoped low-pressure, low-temperature metamorphic facies series. Geology, 12, 1215.Google Scholar
Schlömer, S. & Krooss, B.M. (1997) Experimental characterisation of the hydrocarbon sealing efficiency of cap rocks. Marine and PetroleumGeology, 14, 565580.Google Scholar
Seyfried, W.E. & Bischoff, J.L. (1979) Low temperature basalt alteration by seawater: an experimental study at 70°C and 150°C. Geochimica et Cosmochimica Acta, 43, 19371947.Google Scholar
Seyfried, W.E. & Bischoff, J.L. (1981) Experimental seawater-basalt interaction at 300°C, 500 bars, chemical exchange, secondary mineral formation and implications for the transport of heavy metals. Geochimica et Cosmochimica Acta, 45, 135147.Google Scholar
Shimoda, S. & Sudo, T. (1960) An interstratified misture of mica clay minerals. American Mineralogist, 45, 10691077.Google Scholar
Sudo, T., Hayashi, H. & Shimoda, S. (1962) Mineralogical problems of intermediate clay minerals. Clays and Clay Minerals, 11, 378392.Google Scholar
Teklemariam, M., Battaglia, S., Granelli, G. & Ruggieri, G. (1996) Hydrothermal alteration in the Aluto-Langano geothermal field, Ethiopia. Geothermics, 25, 679702.Google Scholar
Van Genuchten, M.T. (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892898.Google Scholar
Velde, B. (1985) Clay Minerals (a Physico-chemical Explanation of their Occurrence). Developments in Sedimentology, Elsevier, Amsterdam, The Netherlands.Google Scholar
Vidal, O., Parra, T. & Trotet, F. (2001) A thermodynamic model for Fe-Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100° to 600°C, 1 to 25 kb range. American Journal of Science, 301, 557592.Google Scholar
White, A.F. & Brantley, S.L. (1995) Chemical weathering rates of silicate minerals: an overview. Pp. 122 in: Chemical Weathering Rates of Silicate Minerals (White, A.F. & Brantley, S.L., editors). Reviews in Mineralogy 31, Mineralogical Society of America, Washington DC.Google Scholar
Woldegabriel, G., Goff, F. & Aronson, J. (2001) Mineralogy and K-Ar geochronology and mixed layered illite/smectite from The Geysers coring project, California, USA. Geothermics, 30, 193210.Google Scholar
Wolery, T.J. (1992) EQ3/6: Software package for geochemical modelling of aqueous systems: Package overview and installation guide (version 8.0), Lawrence Livermore National Laboratory Report UCRL-MA-10662 PT I, Livermore, California, USA.Google Scholar
Williams-Jones, A.E. (1986) Low-temperature metamorphism of the rocks surrounding Les Mines Gaspé, Quebec: implications for mineral exploration. Economic Geology, 81, 466470.Google Scholar
Xu, T., Sonnenthal, E., Spycher, N. & Pruess, K. (2004) TOUGHREACT user's guide: a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media. Lawrence Berkeley National Laboratory Report LBNL-55460, September 2004, California, USA.Google Scholar
Xu, T., Apps, J.A. & Pruess, K. (2005) Mineral sequestration of carbon dioxide in a sandstone-shale system. Chemical Geology, 217, 295318.Google Scholar
Zhao, G., Peacor, D.R. & Mcdowell, D. (1999) Retrograde diagenesis of clay minerals in the Precambrian Freda sandstone, Wisconsin. Clays and Clay Minerals, 47, 119130.Google Scholar