Skip to main content Accessibility help
×
Home

Characterization of the expandable clays formed from kaolinite at 200ºC

  • M. Bentabol (a1), M. D. Ruiz Cruz (a1), F. J. Huertas (a2) and J. Linares (a2)

Abstract

The hydrothermal reaction of kaolinite in the system Na2O-K2O-MgO-Al2O3-SiO2- H2O-HCl, at near-neutral pH conditions, has been investigated at 200ºC, for times from 12 h to 180 days. X-ray diffraction (XRD) study of the solid products indicates that the phases formed from 15 days’ reaction time are randomly ordered mixed-layer chlorite-smectite, dioctahedral on average, with a chlorite:smectite ratio of ∼1:2. No structural evolution was observed with increasing reaction time. Investigation by transmission electron microscopy revealed, on the contrary, that very thin packets with basal spacing of either 10 Å (smectite) or 14 Å (chlorite) are dominant. In addition, packets with periodicities of 12 –13 Å are also observed. Only rarely, randomly to ordered sequences of 10 and 14 Å are observed in the packets. These observations indicate that the mixture of these phases behaves in XRD as randomly ordered mixed-layer chlorite-smectite. Chemical analysis of the solutions suggests that the neo-formed phases are metastable and would evolve, at longer reaction times, toward ordered mixed-layer chlorite-smectite or to clinochlore.

Copyright

Corresponding author

*E-mail: mdruiz@uma.es

References

Hide All
Bauer, A., Velde, B. & Berger, G. (1998) Kaolinite transformatio n in high molar KOH solutions. Applied Geochemistry, 5, 619629.
Bentabol, M., Ruiz Cruz, M.D., Huertas, F.J. & Linares, J. (2003a) Hydrothermal transformation of kaolinite to illite at 200ºC. Clay Minerals, 38, 161172.
Bentabol, M., Ruiz Cruz, M.D., Huertas, F.J. & Linares, J. (2003b) Hydrothermal transformation of kaolinite into 2:1 expandable minerals. Proceedings of the International Clay Conference, Bahía Blanca, Argentina, pp. 403 – 410.
Boles, J.R. & Franks, S.G. (1979) Clay diagenesis in Wilcox sandstones of Southwest Texas: Implications of smectite diagenesis on sandstone cementation. Journal of Sedimentary Petrology, 49, 5570.
Brigatti, M.F. & Poppi, L. (1984) Crystal chemistry of corrensite: A review. Clays and Clay Minerals, 32, 391399.
Chaterjee, N.D. (1973) Low-temperature compatibility reactions of the assemblage quartz-paragonite and the thermodynamic status of the phase rectorite. Contributions to Mineralogy and Petrology, 42, 259271.
Dunoyer de Segonzac, G. (1970) The transformation of clay minerals during diagenesis and low-grade metamorphism: a review. Sedimentol ogy, 15, 281326.
Ehrenberg, S.N. & Nadeau, P.H. (1989) Formation of diagenetic illite in sandstones of the Gran formation, Haltenbanken area, mid-Norwegian continental shelf. Clay Minerals, 24, 233253.
Frank- Kamenetskii, V.A., Goilo, E.A., Kotov, N.V. & Rieder, M. (1990) Structural transformations of kaolins into (Ni, Al) serpentine-like phases and subsequently into trioctahedral micas under hydrothermal conditions. Clay Minerals, 25, 121125.
Frey, M. (1987) Very low-grade metamorphism of clastic sedimentary rocks. Pp. 9 –58 in. Low-temperature Metamorphism (M. Frey, editor). Blackie & Son Ltd, Glasgow, UK.
González Jesús, J., Huertas, F.J., Linares, J. & Ruiz Cruz, M.D. (2000) Textural and structural transformations of kaolinites in aqueous solutions at 200ºC. Applied Clay Science, 17, 245263.
Huang, W.-L. (1993) The formation of illitic clays from kaolinite in KOH solution from 225ºC to 350ºC. Clays and Clay Minerals, 41, 645654.
Hutcheon, I., Oldershaw, A. & Ghent, E.A. (1980) Diagene sis of Cretaceous sandston es of the Kootenay formation at Elk Valley (Southeastern British Columbia) and Mt Allan (Southwestern Alberta). Geochimica et Cosmochimica Acta, 44, 14251435.
Ichikawa, A. & Shimoda, S. (1976) Tosudite from the Hokuno Mine, Hokuno, Gifu prefecture, Japan. Clays and Clay Minerals, 24, 142148.
Iijima, A. & Matsumoto, R. (1982) Berthierine and chamosite in coal measures of Japan. Clays and Clay Minerals, 30, 264274.
Kharaka, Y.K., Gunter, W.D., Aggarwal, P.K., Perkin, E.H. & De Braal, J.D. (1988) SOLMINEQ.88: A computer program for geochemical modelling of water-rock interaction. US Geological Survey Water-Resources Investigation Report 88-4227. Washington, 420 pp.
Lorimer, G.W. & Cliff, G. (1976) Analytical electron microscopy of minerals. Pp. 506 –519 in. Electron Microscopy in Mineralogy (Wenk., H.R. editor). Springer-Verlag, New York.
Muffler, L.J.P. & White, D.E. (1969) Active metamorphism of Upper Cenozoic sediments in the Salton Sea geothermal field and the Salton Trough, Southeast California. Geological Society of America Bulletin, 80, 157 182.
Newman, A.C.D. & Brown, G. (1987) The chemical constitution of clays. Pp. 1 128.in. Chemistry of Clays and Clay Minerals (Newman., A.C.D. editor). Mineralogical Society, London.
Reynolds, R.C. Jr., & Reynolds, R.C. III (1996) NEWMOD for Windows. The calculation of onedimensional X-ray diffraction patterns of mixedlayered clay minerals. 8 Brook Road, Hanover, New Hampshire 03755, USA.
Roberson, H.E., Reynolds, R.C. Jr., & Henkins, D.M. (1999) Hydrothermal synthesis of corrensite: A study of the transformation of saponite to corrensite. Clays and Clay Minerals, 47, 212218.
Ruiz Cruz, M.D. & Andreo, B. (1996) Tosudite in very low-grade metamorphi c greywackes from the Málaga area (Betic Cordilleras, Spain). European Journal of Mineralogy, 8, 13911399.
Siefert, K. (1970) Low-temperature compatibility relations of cordierite in haplopelites of the system K2O-MgO-Al2O3-SiO2-H2O. Journal of Petrology, 11, 7399.
Velde, B. (1973) Phase equilibrium in the system MgO-Al2O2- SiO2-H2O. Mineralogical Magazine, 39, 297 312.
Velde, B. (1985) Clay Minerals: a Physico-chemical Explanation of their Occurrence. Developments in Sedimentology, 40. Elsevier, Amsterdam, 427 pp.
Wolery, T.J. (1992) EQ3/6, a software package for geochemical modell ing of aqueou s systems (Vers ion 7). Laurence Live rmore Nationa l Laboratory, CA. UCRL-MA-110662.

Keywords

Characterization of the expandable clays formed from kaolinite at 200ºC

  • M. Bentabol (a1), M. D. Ruiz Cruz (a1), F. J. Huertas (a2) and J. Linares (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed