Skip to main content Accessibility help

Ceramic properties of Uşak clay in comparison with Ukrainian clay

  • Tural Aghayev (a1) and Ceren Küçükuysal (a1)


In this contribution, a new raw material, Uşak clay (Usc), was investigated in order to assess its potential for the ceramic industry by comparing it with a world reference ceramic material, a Ukrainian clay (Ukc). Mineralogical characterization (X-ray diffraction [XRD], scanning electron microscopy [SEM] and Fourier-transform infrared [FTIR] spectroscopy), quantitative chemical analysis (X-ray fluorescence [XRF]) and the thermal properties of Ukc and Usc samples were investigated. Additionally, Atterberg limits, particle-size distribution and cation exchange capacity of both samples were determined. Various technological properties of Ukc and Usc were determined in the temperature range 800–1430°C. The bending and compressive strengths, total linear shrinkage, colour, water absorption and unit-volume mass values were measured. The findings from these analyses show that kaolinite-dominated Ukc and quartz-dominated Usc samples differ from each other not only mineralogically, but also in terms of their chemical, physical and technological properties. The firing colour of Usc was determined as 84% white, and so this can be considered as a light firing clay. In addition, due to its low plasticity, Usc may be utilized to reduce both the plasticity of the ceramic materials and the viscosity in slip-casting applied ceramics. Furthermore, the melting temperature of 1300°C suggests that Usc cannot be classified as refractory. However, this property does suggest an economic value for Usc in terms of developing technological characteristics at lower firing temperatures.


Corresponding author


Hide All

This paper was originally presented during the session: ‘CZ-01 – Clays for ceramics’ of the International Clay Conference 2017.

Guest Associate Editor: Michele Dondi



Hide All
Allegretta, I., Pinto, D. & Eramo, G. (2016) Effects of grain size on the reactivity of limestone temper in a kaolinitic clay. Applied Clay Science, 126, 223234.
Azzi, A.A., Osacký, M., Uhlík, P., Čaplovičová, M., Zanardo, A. & Madejová, J. (2016) Characterization of clays from the Corumbataí formation used as raw material for ceramic industry in the Santa Gertrudes district, São Paulo, Brazil. Applied Clay Science, 132–133, 232242.
Bain, D.C., Smith, B.F.L. & Wilson, M.J. (editors) (1994) Clay Mineralogy: Spectroscopy and Chemical Determinative Methods. Chapman & Hall, New York, NY, USA.
Bennour, A., Mahmoudi, S., Srasra, E., Hatira, N., Boussen, S., Ouaja, M. & Zargouni, F. (2015a) Identification and traditional ceramic application of clays from the Chouamekh region in south-eastern Tunisia. Applied Clay Science, 118, 212220.
Bennour, A., Mahmoudi, S., Srasra, E., Boussen, S. & Hatira, N. (2015b) Composition, firing behavior and ceramic properties of the Sejnène clays (Northwest Tunisia). Applied Clay Science, 115, 3038.
Bowles, J.E. (1992) Engineering Properties of Soils and Their Measurement. McGraw-Hill Inc., New York, NY, USA.
Brindley, G.W. & Nakahira, M. (1959) The kaolinite–mullite reaction series: II. Metakolin. Journal of the American Ceramic Society, 42(7), 314318.
Cengiz, O. & Kuşçu, M. (2010) Anamasdağları-Isparta terra rossalarının tuğla-kiremit üretiminde kullanılabilirliği. Kibited, 1(4), 287299.
Chang, L.L.Y. (2002) Industrial Mineralogy: Materials, Processes, and Uses. Prentice Hall, Upper Saddle River, NJ, USA.
Chen, P.Y. (1977) Table of key lines in X-ray powder diffraction patterns of minerals in clays and associated rocks. Geological Survey Occasional Paper 21, Indiana Geological Survey Report 21.
Çelik, H. (2010) Technological characterization and industrial application of two Turkish clays for the ceramic industry. Applied Clay Science, 50, 245254.
Dondi, M., Ercolani, G., Melandri, C., Mingazzini, C. & Marsigli, M. (1999) The chemical composition of porcelain stoneware tiles and its influence on microstructural and mechanical properties. Interceram, 48, 7583.
Dondi, M., Guarini, G., Ligas, P., Palomba, M. & Raimondo, M. (2001) Chemical, mineralogical and ceramic properties of kaolinitic materials from the Tresnuraghes mining district (Western Sardinia, Italy). Applied Clay Science, 18, 145155.
Dondi, M., Guarini, G., Raimondo, M. & Salucci, F. (2003) Influence of mineralogy and particle size on the technological properties of ball clays for porcelainized stoneware tiles. Tile and Brick International, 20(2), 211.
Dondi, M., Raimondo, M. & Zanelli, C. (2014) Clays and bodies for ceramic tiles: reappraisal and technological classification. Applied Clay Science, 96, 91109.
El Ouahabi, M., Daoudi, L. & Fagel, N. (2014) Mineralogical and geotechnical characterization of clays from Northern Morocco for their potential use in ceramic industry. Clay Minerals, 49, 117.
Fabbri, B. & Fiori, C. (1985) Clays and complementary raw materials for stoneware tiles. Mineralogica Petrographica Acta, 29A, 535545.
Grim, R.E. & Rowland, A.R. (2009) Differential Thermal Analysis of Clay Minerals and Other Hydrous Materials, Part 1. Mineralogical Society of America, Chantilly, VA, USA.
Grim, R.E. (1962) Applied Clay Mineralogy. McGraw-Hill, NY, USA.
Holtz, R.D. & Kovacs, W.D. (1981) An Introduction to Geotechnical Engineering. Prentice Hall, Englewood Cliffs, NJ, USA.
Insley, H. & Ewell, R.H. (1935) Thermal behavior of kaolin minerals. Journal of Research of the National Bureau of Standards, USA, 14, 615627.
Jackson, M.L. (1979) Soil Chemical Analysis – Advanced Course, 2nd edition. Published by the author, Madison, WI, USA.
Jones, F.O. (1964) New fast accurate test measures bentonite in drilling mud. Oil Gas Journal, 42, 7678.
Konta, J. (1995) Clay and man: clay raw materials in the service of man. Applied Clay Science, 10, 275335.
Kreimeyer, R. (1987) Some notes on the firing color of clay bricks. Applied Clay Science, 2, 175183.
Lee, V.G. & Yeh, T.H. (2008) Sintering effects on the development of mechanical properties of fired clay ceramics. Materials Science and Engineering, 485, 513.
Mahmoudi, S., Srasra, E. & Zargouni, F. (2008) The use of Tunisian Barremian clay in the traditional ceramic industry: optimization of ceramic properties. Applied Clay Science, 42, 125129.
Mefire, A., Njoya, A., Fouateu, R., Mache, J.R., Tapon, N.A., Nzeukou Nzeugang, A., Melo Chinje, U., Pilate, P., Flament, P., Siniapkine, S., Ngono, A. & Fagel, N. (2016) Occurrences of kaolin in Koutaba (west Cameroon): mineralogical and physicochemical characterization for use in ceramic products. Clay Minerals, 50, 593606.
Milheiro, F.A.C., Freire, M.N., Silva, A.G.P. & Holanda, J.N.F. (2005) Densification behaviour of a red firing Brazilian kaolinitic clay. Ceramics International, 31, 757763.
Monteiro, S.N. & Vieira, C.M.F. (2004) Influence of firing temperature on the ceramic properties of clays from Campos dos Goytacazes, Brazil. Applied Clay Science, 27, 229234.
Moore, D.M. & Reynolds, J.R. (1989) X-Ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford, UK.
Murray, H.H. (2007) Applied Clay Mineralogy. Developments in Clay Science. Elsevier, Amsterdam, The Netherlands.
Ngun, B.K., Mohamad, H., Sulaiman, S.K., Okada, K. & Ahmad, Z.A. (2011) Some ceramic properties of clays from central Cambodia. Applied Clay Mineralogy, 53, 3341.
Smoot, T.W. (1961) Clay minerals in the ceramic industries. Clays and Clay Minerals, 10, 309317.
TCF (2009) Turkish Ceramics Federation, Ceramic Tile World Data.
Thorez, J. (1976) Practical Identification of Clay Minerals. Lelotte, Dison, Belgium.
TS 4790 (1986) Test Method for Common Bricks and Roofing Tile Clays. Turkish Standards Institution, Ankara, Turkey.
TS EN 772-21 (2011) Methods of Test for Masonry Units – Part 21: Determination of Water Absorption of Clay and Calcium Silicate Masonry Units by Cold Water Absorption. Turkish Standards Institution, Ankara, Turkey.
TS EN 772-7 (2000) Methods of Test for Masonry Units – Part 7: Determination of Water Absorption of Clay Masonry Damp Proof Course Units by Boiling in Water. Turkish Standards Institution, Ankara, Turkey.
TS EN 771-1 (2012) Specification for Masonry Units – Part 1: Clay Masonry Units. Turkish Standards Institution, Ankara, Turkey.
Udvardi, B., Kovács, I.J., Kónya, P., Földvári, M., Füri, J., Budai, F., Falus, G., Fancsik, T., Szabó, C., Szalai, Z. & Mihály, J. (2014) Application of attenuated total reflectance Fourier transform infrared spectroscopy in the mineralogical study of a landslide area, Hungary. Sedimentary Geology, 313, 114.
Zaied, F.H.B., Abidi, R., Slim-Shimi, N. & Somarin, A.K. (2015) Potentiality of clay raw materials from Gram area (Northern Tunisia) in the ceramic industry. Applied Clay Science, 112–113, 19.
Zanelli, C., Iglesias, C., Domínguez, E., Gardini, D., Raimondo, M., Guarini, G. & Dondi, M. (2015) Mineralogical composition and particle size distribution as a key to understand the technological properties of Ukrainian ball clays. Applied Clay Science, 108, 102110.


Ceramic properties of Uşak clay in comparison with Ukrainian clay

  • Tural Aghayev (a1) and Ceren Küçükuysal (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed