Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T05:02:56.192Z Has data issue: false hasContentIssue false

Ammonium exchange capacity of the Xerovouni zeolitic tuffs, Avdella area, Evros Prefecture, Greece

Published online by Cambridge University Press:  09 July 2018

E. Tzamos*
Affiliation:
Department of Geology, Aristotle University, 54124 Thessaloniki, Greece
N. Kantiranis
Affiliation:
Department of Geology, Aristotle University, 54124 Thessaloniki, Greece
G. Papastergios
Affiliation:
Department of Geology, Aristotle University, 54124 Thessaloniki, Greece
D. Vogiatzis
Affiliation:
Department of Geology, Aristotle University, 54124 Thessaloniki, Greece
A. Filippidis
Affiliation:
Department of Geology, Aristotle University, 54124 Thessaloniki, Greece
C. Sikalidis
Affiliation:
Department of Chemical Engineering, Aristotle University, 54124 Thessaloniki, Greece
*

Abstract

Zeolitic tuffs from the Xerovouni location of the Avdella area (Evros Prefecture, Greece) contain on average 54 wt.% HEU-type zeolite, 6 wt.% smectite, 4 wt.% mica (64 wt.% microporous minerals), 8 wt.% alkali feldspar, 9 wt.% plagioclase, 11 wt.% cristobalite and 8 wt.% quartz (36 wt.% non-microporous minerals). The chemical formula of the HEU-type zeolite is Ca2.4K0.6Na0.4Mg0.3Al6.7Si29.3O72·17H2O and the tuffs contain on average 72.3 wt.% SiO2, 11.9 wt.% Al2O3, 1.2 wt.% Fe2O3, 1.0 wt.% MgO, 2.8 wt.% CaO, 1.3 wt.% Na2O and 1.9 wt.% K2O. The zeolitic tuffs show an average ammonium exchange capacity of 144 meq/100 g. HEU-type zeolite accounts for the most of the ammonium exchange capacity, while smectite and mica contribute to a relatively small extent. The ammonium exchange capacity of the Xerovouni zeolitic tuffs showed positive correlations with (a) the HEU-type zeolite content, (b) the total microporous minerals content, (c) the loss on ignition content and (d) the CaOcontent. Such materials could be used in a large variety of agricultural, aquacultural, industrial and environmental applications.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bain, D.C. & Smith, B.F.L. (1987) Chemical analysis. Pp. 248274 in: A Handbook of Determinative Methods in Clay Mineralogy (M.J. Wilson, editor). Blackie, Glasgow.Google Scholar
Barrer, R.M. (1978) Zeolites and Clay Minerals as Sorbents and Molecular Sieves. Academic Press, New York, USA.Google Scholar
Bish, D.L. & Ming, D.W. (2001) Natural Zeolites: Occurrence, Properties, Applications. Reviews in Mineralogy and Geochemistry, 45. Mineralogical Society of America, Washington DC, USA.CrossRefGoogle Scholar
Colella, C. & Mumpton, F.A. (2000) Natural Zeolites for the Third Millennium. De Frede Editore, Napoli.Google Scholar
Deer, W.A., Howie, R.A. & Zussman, J. (1992) An Introduction to the Rock-Forming Minerals, 2nd edition. Longmans, London.Google Scholar
Filippidis, A. (1993) New find of moissanite in the Metaxades zeolite-bearing volcaniclastic rocks, Thrace County, Greece. Neues Jahrbuch für Mineralogie Monatshefte, 11, 521527.Google Scholar
Filippidis, A. & Kantiranis, N. (2007) Experiment of neutralization of lake and stream waters from N. Greece using domestic HEU-type rich natural zeolitic material. Desalination, 213, 4755.CrossRefGoogle Scholar
Filippidis, A., Godelitsas, A., Charistos, D., Misaelides, P. & Kassoli-Fournaraki, A. (1996) The chemical behavior of natural zeolites in aqueous environments; interaction between low-silica zeolites and 1 M NaCl solutions of different pH-values. Applied Clay Science, 11, 199209.CrossRefGoogle Scholar
Filippidis, A., Apostolidis, N., Paragios, I. & Filippidis, S. (2008) Zeolites clean up. Industrial Minerals, April, 6871.Google Scholar
Godelitsas, A., Misaelides, P., Charistos, D., Filippidis, A. & Anousis, I. (1996a) Interaction of HEU-type zeolite crystals with thorium aqueous solutions. Chemie der Erde, 56, 143156.Google Scholar
Godelitsas, A., Misaelides, P., Filippidis, A., Charistos, D. & Anousis, I. (1996b) Uranium sorption from aqueous solutions on sodium-form of HEU-type zeolite crystals. Journal of Radio analytical and Nuclear Chemistry, 208, 393402.CrossRefGoogle Scholar
Haidouti, C. (1997) Inactivation of mercury in contaminated soils using natural zeolites. The Science of the Total Environment, 208, 105109.CrossRefGoogle ScholarPubMed
Holmes, D.A. (1994) Zeolites. Pp. 11291158 in: Industrial Minerals and Rocks (Carr, D.D., editor). Braun-Brumfield, Michigan.Google Scholar
Kantiranis, N., Chrissafis, C., Filippidis, A. & Paraskevopoulos, K. (2006) Thermal distinction of HEU-type mineral phases contained in Greek zeolite-rich volcaniclastic tuffs. European Journal of Mineralogy, 18, 509516.CrossRefGoogle Scholar
Katranas, T.K., Vlessidis, A.G., Tsiatouras, V.A., Triantafyllidis, K.S. & Evmiridis, N.P. (2003) Dehydrogenation of propane over natural clinoptilolite zeolites. Microporous and Mesoporous Materials, 61, 189198.CrossRefGoogle Scholar
Koutles, Th., Kassoli-Fournaraki, A., Filippidis, A. & Tsirambides, A. (1995) Geology and geochemistry of the Eocene zeolitic-bearing volcaniclastic sediments of Metaxades, Thrace, Greece. Estudios Geologicos, 51, 1927.CrossRefGoogle Scholar
Misaelides, P., Godelitsas, A., Charistos, V., Ioannou, D. & Charistos, D. (1994) Heavy metal uptake by zeoliferous rocks from Metaxades, Thrace, Greece: an exploratory study. Journal of Radioanalytical and Nuclear Chemistry, Articles, 183, 159166.CrossRefGoogle Scholar
Misaelides, P., Godelitsas, A. & Filippidis, A. (1995a) The use of zeoliferous rocks from Metaxades-Thrace, Greece, for the removal of caesium from aqueous solutions. Fresenius Environmental Bulletin, 4, 227231.Google Scholar
Misaelides, P., Godelitsas, A., Filippidis, A., Charistos, D. & Anousis, I. (1995b) Thorium and uranium uptake by natural zeolitic materials. The Science of the Total Environment, 173/174, 237246.CrossRefGoogle Scholar
Mumpton, F.A. (1977) Mineralogy and Geology of Natural Zeolites. Mineralogical Society of America, 4, Blacksburg, Virginia, USA.CrossRefGoogle Scholar
Papadopoulos, A., Fatta, D., Parperis, K., Mentzis, A., Haralambous, K.J. & Loizidou, M. (2004) Nickel uptake from a wastewater stream produced in a metal finishing industry by combination of ion-exchange and precipitation methods. Separation and Purification Technology, 39, 181188.CrossRefGoogle Scholar
Pond, G.W. & Mumpton, F.A. (1984) Zeo-Agriculture: Use of Natural Zeolites in Agriculture and Aquaculture. Westview Press, Colorado, USA Google Scholar
Sand, L.B. & Mumpton, F.A. (1978) Natural Zeolites: Occurrence, Properties, Uses. Pergamon Press, New York, USA.Google Scholar
Stamatakis, M., Hall, A. & Hein, R. (1996) The zeolite deposits of Greece. Mineralium Deposita, 31, 473481.CrossRefGoogle Scholar
Symeopoulos, B., Soupioni, M., Misaelides, P., Godelitsas, A. & Barbayiannis, N. (1996) Neodymium sorption by clay minerals and zeoliferous rocks. Journal of Radioanalytical and Nuclear Chemistry, Letters, 212, 421429.Google Scholar
Tserveni-Gousi, A.S., Yannakopoulos, A.L., Katsaounis, N.K., Filippidis, A. & Kassoli-Fournaraki, A. (1997) Some interior egg characteristics as influenced by addition of Greek clinoptilolitic rock material in the hen diet. Archiv für Getlugelkunde, 61, 291296.Google Scholar
Tsirambides, A., Filippidis, A. & Kassoli-Fournaraki, A. (1993) Zeolitic alteration of Eocene volcaniclastic sediments at Metaxades, Thrace, Greece. Applied Clay Science, 7, 509526.CrossRefGoogle Scholar
Tsitsishvili, G.V., Andronikashvili, T.G., Kirov, G.N. & Filizova, L.D. (1992) Natural Zeolites. Ellis Horwood, New York, USA.Google Scholar
Tsolis-Katagas, P. & Katagas, C. (1990) Zeolitic diagenesis of Oligocene pyroclastic rocks of the Metaxades area, Thrace, Greece. Mineralogical Magazine, 54, 95103.CrossRefGoogle Scholar
Vlessidis, A.G., Triantafillidis, C.S. & Evmiridis, N.P. (2001) Removal and recovery of p-phenylenediamines developing coumpounds from photofinishing lab washwater using clinoptilolite tuffs from Greece. Water Research, 35, 16031608.CrossRefGoogle Scholar
Yannakopoulos, A., Tserveni-Gousi, A. & Christaki, E. (1998) Effect of natural zeolite on yolk: albumen ratio in hen eggs. British Poultry Science, 39, 506510.CrossRefGoogle ScholarPubMed