Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T07:09:46.189Z Has data issue: false hasContentIssue false

Adsorption of methylene blue on sepiolite gels: spectroscopic and rheological studies

Published online by Cambridge University Press:  09 July 2018

A. J. Aznar
Affiliation:
Instituto de Ciencia de Materiales—Madrid, CSIC
B. Casal
Affiliation:
Instituto de Ciencia de Materiales—Madrid, CSIC
E. Ruiz-Hitzky
Affiliation:
Instituto de Ciencia de Materiales—Madrid, CSIC
I. Lopez-Arbeloa
Affiliation:
Departamento de Química Física, Universidad del Pais Vasco
F. Lopez-Arbeloa
Affiliation:
Departamento de Química Física, Universidad del Pais Vasco
J. Santaren
Affiliation:
Departamento de I&D, Tolsa, SA, Spain
A. Alvarez
Affiliation:
Departamento de I&D, Tolsa, SA, Spain

Abstract

The adsorption isotherm of methylene blue (MB) on sepiolite gels is of the Langmuir type, indicating a great affinity of the MB towards the sepiolite; the adsorption is quantitative up to adsorption of MB of 0·1 mmol/g sepiolite. The differences observed in the absorption spectrum in the region 500–650 nm for different MB loadings are interpreted in terms of aggregation of MB molecules on the sepiolite surface with the formation of MB dimers, trimers and higher aggregates. The progressive coverage of the sepiolite surface by MB produces a sharp decrease in the viscosity of the gels, and the suspension becomes peptized for an MB loading of 0·21 mmol/g which corresponds to the adsorption of MB dimers. These results indicate that MB avoids particle-to-particle interactions. The viscosity decrease is parallel to the perturbation of the Si-OH groups on the sepiolite surface as observed by IR spectroscopy, suggesting that these silanol groups can also play an important role in the rheological behaviour of aqueous sepiolite dispersions.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, A., Agagòn, J.J. & Perez-Castells, R. (1984) A rheological grade sepiolite and process for its manufacture. European Patent, 0170299.Google Scholar
Alvarez, A., Santaren, J., Perez-Castells, R., Casal, B., Ruiz-Hitzky, E., Levitz, P. & Fripiat, J.J. (1987) Surfactant adsorption and rheological behavior of surface-modified sepiolite. Proc. Int. Clay Conf. Denver,, 370374. Google Scholar
Bergman, K. & O'konski, C.T. (1963) A spectroscopic study of methylene blue monomer, dimer and complexes with montmorillonite. J. Phys. Chem., 67, 2169–2177.CrossRefGoogle Scholar
Birks, J.B. (1973) Photophysics of Aromatic Molecules. Wiley Interscience, London. Google Scholar
Brauner, K. & Preisinger, A. (1956) Structure and origin of sepiolite. Miner. Petr. Mitt., 6, 120–140.Google Scholar
Cenens, J. & Schoonheydt, R.A. (1988) Visible spectroscopy of methylene blue on hectorite, Laponite B, and Barasym in aqueous suspension. Clays Clay Miner., 36, 214–224.CrossRefGoogle Scholar
Fornili, S.L., Sgroi, G. & Izzo, V. (1981) Solvent isotope effect in the monomer-dimer equilibrium of methylene blue. J. Chem, Soc. Faraday Trans., 7 77, 30493053.Google Scholar
Giles, C.H., MacEwan, T.H., Nakhma, S.N. & Smith, D. (1960) Adsorption. XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc., 39733993.CrossRefGoogle Scholar
Handa, T., Ichihashi, C., Yamamoto, I. & Nakagaki, M. (1983) The location and microenvironment of dimerizing cationic dyes in lipid membranes as studied by means of their absorption spectra. Bull. Chem. Soc. Japan, 56, 2548–2554.CrossRefGoogle Scholar
Hang, P.T. & Brindley, G.W. (1970) Methylene blue adsorption by clay minerals. Determination of surface areas and cation exchange capacities (clay-organic studies XVIII). Clays Clay Miner. 18, 203212.CrossRefGoogle Scholar
Joshi, V. & Ghosh, P.K. (1989) Spectral evidence of spontaneous racemic and “pseudoracemic” interactions between optically active poly(pyridyl) metal chelates adsorbed on smectite clays. J. Am. Chem. Soc. III, 56045612.CrossRefGoogle Scholar
Permogorov, V.I., Serdynkova, L.A. & Frank-Kamenetskii, M.D. (1968) The nature of the long-wavelength absorption and luminescence bands of dyes. Opt. Spectrosc., 25, 3842.Google Scholar
Santaren, J., Sanz, J. & Ruiz-Hitzky, E. (1990) Structural fluorine in sepiolite. Clays Clay Miner., 38, 63–68.CrossRefGoogle Scholar
Schoonheydt, R.A., Cenens, J. & De Schryver, F.C. (1986) Spectroscopy of proflavine on clays. J. Chem. Soc. Faraday Trans. I, 82, 281–289.Google Scholar
Schubert, M. & Levine, A. (1955) A qualitative theory of metachromasy in solution. J. Am. Chem. Soc., 77, 41974201.Google Scholar
Simonton, T.C., Komarneni, S. & Roy, R. (1988) Gelling properties of sepiolite versus montmorillonite. Appl. Clay Sci., 3, 165–176.Google Scholar
Soderling, L. & Nhlinhr, S. (1975) Applied spectrophotometry in methylene blue clay determination. AFS Trans. 83, 7780.Google Scholar
Thomas, J.K. (1988) Photophysical and photochemical processes on clay surfaces. Acc. Chem. Res. 21, 275280.Google Scholar
Yariv, S. & Lurie, D. (1971) Metachromasy in clay minerals. Part I. Sorption of methylene blue by montmorillonite. Israel J. Chem. 9, 537552.Google Scholar
Yariv, S., Nasser, A. & Bar-On, P. (1990) Metachromasy in clay minerals. J. Chem. Soc. Faraday Trans.I 86, 15931598 (and references therein).Google Scholar