Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T19:03:07.030Z Has data issue: false hasContentIssue false

The acidity of surface groups of dioctahedral smectites

Published online by Cambridge University Press:  09 July 2018

S. Kaufhold*
Affiliation:
BGR, Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, D-30655, Hannover, Germany
H. Stanjek
Affiliation:
Clay and Interface Mineralogy, RWTH Aachen University, Bunsenstr. 8, D-52072 Aachen, Germany
D. Penner
Affiliation:
ZHAW Zürich University of Applied Sciences, CH-8401 Winterthur, Switzerland
R. Dohrmann
Affiliation:
LBEG, Landesamt für Bergbau, Energie und Geologie, Stilleweg 2, D-30655, Hannover, Germany
*

Abstract

Suspensions of thirty six bentonites were equilibrated for 24 h and then adjusted to pH 3. After an hour, pH titrations up to pH 12 at varying ionic strengths were performed within 4.5 h. The titration data were recalculated into proton affinity distributions (PAD) using the condensed approximation. In spite of widely varying chemical compositions, all bentonites showed a protonation reaction between pK 4 and 5, which could be assigned to aluminol groups at the edge surfaces of the smectites. The average pK is 4.73±80.31. A second prominent peak in the PAD at pK = 10.43±80.13 could be assigned to exchangeable Mg2+ in the interlayer space. The possibility to constrain both pK values at a fixed average value will decrease the number of parameters in surface complexation modelling and thus enhance its convergence.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abidin, Z., Matsue, N. & Henmis, T. (2007) Nanometer-scale chemical modification of nano-ball allophane. Clays and Clay Minerals, 55, 443449.CrossRefGoogle Scholar
Alba, M.D., Becerro, A.I., Castro, M.A., Perdigon, A.C. & Trillo, J.M. (2003) Inherent acidity of aqua metal ions in solids: An assay in layered aluminosilicates. Journal of Physical Chemistry B, 107, 39964001.CrossRefGoogle Scholar
Benesi, H.A. & Winquist, H. (1978) Surface acidity of solid catalysts. Advances in Catalysis, 27, 97182.Google Scholar
Bickmore, B.R., Rosso, K.M., Nagy, K.L., Cygan, R.T. & Tadanier, C.J. (2003) Ab initio determination of edge surface structures for dioctahedral 2:1 phyllosilicates: implications for acid-base reactivity. Clays and Clay Minerals, 51, 359371.CrossRefGoogle Scholar
Bleam, W.F., Welhouse, G.J. & Janowiak, M.A. (1993) The surface Coulomb energy and proton Coulomb potentials of pyrophyllite 010, 110, 100, and 130 edges. Clays and Clay Minerals, 41, 305316.CrossRefGoogle Scholar
Bolt, G. & van Riemsdijk, W.H. (1982) Ion adsorption on inorganic variable charge constituents. Pp. 459504 in: Soil Chemistry. B. Physico-Chemical models (Bolt, G., editor), 2nd edition. Elsevier.Google Scholar
Bourg, I.C., Sposito, G. & Bourg, A.C.M. (2007) Modeling the acid-base surface chemistry of montmorillonite. Journal of Colloid and Interface Science, 312, 297310.CrossRefGoogle ScholarPubMed
Brady, P.V., Cygan, R.T. & Nagy, K.L. (1996) Molecular controls on kaolinite surface charge. Journal of Colloid and Interface Science, 183, 356364.CrossRefGoogle ScholarPubMed
Cases, J., Berend, I., Francois, M., Uriot, J.-P., Michot, L.J. & Thomas, F. (1997) Mechanism of adsorption and desorption of water vapor by homoinonic montmorillonite: 3. The Mg2+, Ca2+, Sr2+ and Ba2+ exchanged forms. Clays and Clay Minerals, 45, 822.CrossRefGoogle Scholar
Contescu, C., Jagiello, J. & Schwarz, J.A. (1993) Heterogeneity of proton binding sites at the oxide/ solution interface. Langmuir, 9, 17541765.CrossRefGoogle Scholar
Davis, J. & Kent, D. (1990) Surface complexation modeling in aqueous geochemistry. Pp. 77260 in: Mineral-water interactions (Hochella, M. & White, A., editors). Reviews in Mineralogy, 23. Mineralogical Society of America.Google Scholar
Due, M., Carteret, C., Thomas, F. & Gaboriaud, F. (2008) Temperature effect on the acid-base behaviour of Na-montmorillonite. Journal of Colloid and Interface Science, 327, 472476.Google Scholar
Hiemstra, T. & van Riemsdijk, W. (1996) A surface structural approach to ion adsorption: The charge distribution (CD) model. Journal of Colloid and Interface Science, 179, 488508.CrossRefGoogle Scholar
Hiemstra, T., De Wit, J. & Bolt, G. (1989) Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: A new approach. I. Model description and evaluation of intrinsic reaction constants. Journal of Colloid and Interface Science, 133, 91104.CrossRefGoogle Scholar
Hiemstra, T., Venema, P. & van Riemsdijk, W. (1996) Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: The bond valence principle. Journal of Colloid and Interface Science, 184, 680692.CrossRefGoogle ScholarPubMed
Huertas, F.J., Chou, L. & Wollast, R. (1998) Mechanism of kaolinite dissolution at room temperature and pressure: Part 1. Surface speciation. Geochimica et Cosmochimica Ada, 62, 417431.CrossRefGoogle Scholar
Janek, M. & Komadel, P. (1999) Acidity of proton saturated and autotransformed smectites characterized with proton affinity distribution. Geologica Carpathica, 50, 373378.Google Scholar
Janek, M. & Lagaly, G. (2001) Proton saturation and rheological properties of smectite dispersions. Applied Clay Science, 19, 121130.CrossRefGoogle Scholar
Kaufhold, S. (2001) Untersuchungen zur Eignung von natiirlich alterierten sowie mit Oxalsdure aktivierten Bentoniten als Bleicherde fur Pflanzenole. Ph.D. thesis, 188 pp., online available at http:// 134.130.184.8/opus/frontdoor.php?source opus=256, RWTH-Aachen.Google Scholar
Kaufhold, S. & Dohrmann, R. (2008) Detachment of colloidal particles from bentonites in water. Applied Clay Science, 39, 5059.CrossRefGoogle Scholar
Kaufhold, S., Dohrmann, R., Ufer K & Meyer, F. (2002) Comparison of methods for the quantification of montmorillonite in bentonites. Applied Clay Science, 22, 145151.CrossRefGoogle Scholar
Kaufhold, S., Dohrmann, R., Koch, D. & Houben, G. (2008) The pH of aqueous bentonite suspensions. Clays and Clay Minerals, 56, 338343.CrossRefGoogle Scholar
Kaufhold, S., Dohrmann, R., Klinkenberg, M., Siegesmund, S. & Ufer K (2010) N2-BET specific surface area of bentonites. Journal of Colloid and Interface Science, 349, 275282.CrossRefGoogle Scholar
Lyklema, J. (1995) Fundamentals of Interface and Colloid Science. Volume II: Solid-Liquid Interfaces. Academic Press, London.Google Scholar
Meier, L. & Kahr, G. (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraethylenepentamine. Clays and Clay Minerals, 47, 386388.CrossRefGoogle Scholar
Nagy, N.M. & Könya, J. (2006) Acid-base properties of bentonite rocks with different origins. Journal of Colloid and Interface Science, 295, 173180.CrossRefGoogle ScholarPubMed
Parkhurst, D. & Appelo, C. (1999) User's guide to PHREEQC (version 2.6) —A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Technical report, US Geological Survey Water-Resources Investigations Report 99-4259.Google Scholar
Peacock, C.L. & Sherman, D.M. (2005) Surface complexation model for multisite adsorption of copper(II) onto kaolinite. Geochimica et Cosmochimica Ada, 69, 37333745.CrossRefGoogle Scholar
Rosenqvist, J., Persson, P. & Sjöberg, S. (2002) Protonation and charging of nanosized gibbsite (- A1(OH)3) particles in aqueous suspension. Langmuir, 18, 45984604.CrossRefGoogle Scholar
Salles, F., Douillard, J.-M., Denoyel, R., Bildstein, O., Jullien, M., Beuroies, I. & Van Damme, H. (2009) Hydration sequence of swelling clays: Evolutions of specific surface area and hydration energy. Journal of Colloid and Interface Science, 333, 510552.CrossRefGoogle ScholarPubMed
Stumm, W.(1992) Chemistry of the Solid-Water Interface. Wiley Interscience, New York.Google Scholar
Tertre, E., Castet, S., Berger, G., Loubet, M. & Giffaut, E. (2006) Surface chemistry of kaolinite and Namontmorillonite in aqueous electrolyte solutions at 25 and 60°C: Experimental and modeling study. Geochimica et Cosmochimica Ada, 70, 45794599.CrossRefGoogle Scholar
Turner, G.D., Zachara, J.M., McKinley, J.P. & Smith, S.C. (1996) Surface-charge properties and UO2 2+ adsorption of a subsurface smectite. Geochimica et Cosmochimica Ada, 60, 33993414.CrossRefGoogle Scholar
Ufer, K., Stanjek, H., Roth, G., Dohrmann, R., Kleeberg, R. & Kaufhold, S. (2008) Quantitative phase analysis of bentonites by the Rietveld method. Clays and Clay Minerals, 56, 272282.CrossRefGoogle Scholar
Ward, D.B. & Brady, P.V. (1998) Effect of Al and organic acids on the surface chemistry of kaolinite. Clays and Clay Minerals, 46, 453465.CrossRefGoogle Scholar
Westall, J. & Hohl, H. (1980) A comparison of electrostatic models for the oxide/solution interface. Advances in Colloid and Interface Sciences, 12, 265294.CrossRefGoogle Scholar
White, G. & Zelazny, L. (1988) Analysis and implications of the edge structure of dioctahedral phyllosilicates. Clays and Clay Minerals, 36, 141146.CrossRefGoogle Scholar
Wieland, E. & Stumm, W. (1992) Dissolution kinetics of kaolinite in acidic aqueous solutions at 25°C. Geochimica et Cosmochimica Ada, 56, 33393355.CrossRefGoogle Scholar
Yariv, S. (1992) The effect of tetrahedral substitution of Si by Al on the surface acidity of the oxygen plane of clay minerals. International Reviews in Physical Chemistry, 11, 345375.CrossRefGoogle Scholar
Zabat, M., Vayer-Besancon, M., Harba, R., Bonnamy, S. & Van Damme, H. (1997) Surface topography and mechanical properties of smectite films. Progress in Colloid and Polymer Sciences, 105, 96102.Google Scholar
Zeisig, A., Jahn, R., Dohrmann, R. & Kaufhold, S. (2005) Allophane-rich clay — a special clay from Santo Domingo de los Colorados (Ecuador), characterization and potential application. Berichte der Deutschen Ton und Tonmineralgruppe, 11, 99104.Google Scholar