Skip to main content Accessibility help
×
Home

Weathering of smectite and illite- smectite under temperate climatic conditions

Published online by Cambridge University Press:  09 July 2018

V. Šucha
Affiliation:
Department of Geology of Mineral Deposits, Comenius University, Mlynska dolina, 84215 Bratislava Slovakia
J. Środoń
Affiliation:
Institute of Geological Sciences, PAN, Senacka 1, 31-002 Kraków, Poland
N. Clauer
Affiliation:
Centre de Géochimie de la Surface (CNRS-ULP), 1 rue Blessig, 67084 Strasbourg France
F. Elsass
Affiliation:
Institut National de la Recherche Agronomique, Science du Sol, Route de Saint-Cyr, 78026 Versailles France
D. D. Eberl
Affiliation:
United States Geological Survey, Marine St Boulder, Colorado 80225, USA
I. Kraus
Affiliation:
Department of Geology of Mineral Deposits, Comenius University, Mlynska dolina, 84215 Bratislava Slovakia
J. Madejová
Affiliation:
Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská 9, Bratislava Slovakia
Corresponding
E-mail address:

Abstract

Weathering profiles developed on the top surface of a bentonite (containing Al-Mg montmorillonite) and a K-bentonite (containing mixed-layer illite-smectite (I-S)) under Central European temperate conditions were studied by XRD, HRTEM, FTIR, K-Ar and chemical analyses. Weathering of montmorillonite results in the decrease of cation exchange capacity (CEC), total surface area and Mg content. The process is interpreted as montmorillonite dissolution and precipitation of amorphous SiO2. Weathering of I-S produces an increase in CEC and total surface area. The XRD data suggest dissolution of I-S and appearance of smectite as a separate phase at intermediate depths. The fixation of ammonium is documented in the topmost sample. In both profiles, abundant aeolian contaminants, including mica, were identified and their migration was traced using K-Ar dating.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below.

References

April, R.H., Hluchy, M.M. & Newton, R.M. (1986) The nature of vermiculite in Adirondack soils and till. Clays Clay Miner. 31, 319–332.Google Scholar
Bonhomme, M., Thuizat, R., Pinault, Y., Clauer, N., Wendling, R. & Winkler, R. (1975) Méthode de datation potassium-argon. Appareillage et technique. Note technique de l‘Institute de Géologie, Univ. Strasbourg, 3, 53 pp.Google Scholar
Bray, R.H. (1937) Chemical and physical changes in soil colloids with advancing development in Illinois soils. Soil Sci. 43, 1–14.CrossRefGoogle Scholar
Číčel, B., Komadel, P., Bednáriková, E. & Madejová, J. (1992) Mineralogical composition and distribution of Si,Al,Fe,Mg and Ca in the fine fraction of some Czech and Slovak bentonites. Geol. Carpathica – Series Clays, 43, 3–7.Google Scholar
Douglas, L.A. (1982) Smectites in acidic soils. Pp. 635–640 in. Proceedings of the International Clay Conference, 1981 (Van Olphen, H. & Veniale, F., editors). Developments in Sedimentolog y, 35. Elsevier, Amsterdam, The Netherlands.Google Scholar
Drits, V.A., Środoń, J. & Eberl, D.D. (1997) XRD measurement of mean illite crystallite thickness: reappraisal of the Kübler index and the Scherrer equation. Clays Clay Miner. 45, 461–475.CrossRefGoogle Scholar
Drits, V.A., Eberl, D.D. & Środoń, J. (1998) XRD measurement of mean thickness, thickness ditribution and strain for illite and illite/smectite crystallites by the Bertaut-Warren-Averbach technique. Clays Clay Miner. 46, 461–475.CrossRefGoogle Scholar
Eberl, D.D., Środoń, J. & Northrop, H.R. (1986) Potassium fixation in smectite by wetting and drying. Pp. 296–326 in. Geochemical Processes at Mineral Surfaces (Davis, J.A. & Hayes, K.F., editors). ACS Symposium Series, 323. American Chemical Society, Washington, D.C.Google Scholar
Eberl, D.D., Drits, V., Środoń, J. & Nüesch, R. (1996) MudMaster: a program for calculating crystallite size distribution and strain from the shapes of X-ray diffraction peaks. U.S.G.S. Open File Report, 96-171. 44 pp.Google Scholar
Eberl, D.D., Nüesch, R., Šucha, V. & Tsipursky, S. (1998) Measurement of fundamental illite particle thickness by X-ray diffraction using PVP-10 intercalation. Clays Clay Miner. 46, 89–97.CrossRefGoogle Scholar
Elsass, F., Środoń, J. & Robert, M. (1997) Illite-smectite alterat ion and accompanying reactions in a Pennsylvanian underclay studied by TEM. Clays Clay Miner. 45, 390–403.CrossRefGoogle Scholar
Farmer, V.C. (1974) The Infrared Spectra of Minerals. Monograph 4. Mineralogical Society, London.CrossRefGoogle Scholar
Jackson, M.L. (1975) Soil Chemical Analysis – Advanced Course. Published by the author, Madison, WI, 389 pp.Google Scholar
Konečný, V., Lexa, J. & Planderová, E. (1983) Stratigraphy of Slovak Neovolcanites. ZápadnéKarpaty, ser. geol. 9, GU´DŠ, Bratislava, 1–203 (in Slovak).Google Scholar
Kraus, I., Šamajová, E., Šucha, V., Lexa, J. & Hroncová, Z. (1994) Diagenetic and hydrothermal alteration of volcanic rocks into clay minerals and zeolites (Kremnickévrchy Mts., The Western Carpathians). Geol. Carpathica, 45, 151–158.Google Scholar
Madejová, J., Komadel, P. & Číčel, B. (1992) Infrared spectra of some Czech and Slovak smectites and their correlation with structural formulas. Geol. Carpathica – Series Clays, 43, 9–12.Google Scholar
Novák, I. & Číčel, B. (1972) Refinement of surface area determining of clays by ethylene glycol monoethyl ether (EGME) retention. Pp. 123–129 in: Proc. 5th Conference on Clay Mineralogy and Petrology, Prague, 1970 (Melka, K., edit or). Charles University, Prague.Google Scholar
Repčok, I. (1979) Uranium fission track dating of the Central Slovakian neovolcanites. ZápadnéKarpaty, series Mineral., Petrogr., Geoch, Metalogen. 8, 59–104.Google Scholar
Reynolds, R.C. (1985) NEWMOD: a computer program for the calculation of one-dimensional diffraction patterns of mixed-layered clays. Jr.Reynolds, R.C., 8 Brook Dr., Hanover, NH 03755.Google Scholar
Righi, D., Velde, B. & Meunier, A. (1995) Clay stability in a clay-dominated soil system. Clay Miner. 30, 45–54.CrossRefGoogle Scholar
Righi, D., Terrible, F. & Petit, S. (1998) Pedogenic formation of high-charge beidellite in a Vertisol of Sardinia (Italy). Clays Clay Miner. 46, 167–177.CrossRefGoogle Scholar
Środoń, J. (1980) Precise identification of illite/smectite interstratifications by X-ray powder diffraction. Clays Clay Miner. 28, 401–411.CrossRefGoogle Scholar
Środoń, J. (1999a) Nature of mixed-layer clays and mechanisms of their formation and alteration. Ann. Rev. Earth Planet. Sci. 27, 19–53.Google Scholar
Środoń, J. (1999b) Use of clay minerals in reconstructing geological processes: recent advances and some perspectives. Clay Miner. 34, 27–37.CrossRefGoogle Scholar
Środoń, J. (1999c) Extracting K-Ar ages from shales: a theoretical test. Clay Miner. 33, 375–378.Google Scholar
Środoń, J., Andreolli, C., Elsass, F. & Robert, M. (1990) Direct high-resolution transmission electron microscopic measurement of expandability of mixed-layer illite/smectite in bentonite rocks. Clays Clay Miner. 38, 373–379.CrossRefGoogle Scholar
Steiger, R.H. & Jäger, E. (1977) Subcommission of geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 36, 359–362.CrossRefGoogle Scholar
Šucha, V. & Kraus, I. (1999) Natural microporous materials of central Slovakia. Pp. 101–107 in: Natural Microporous Materials in Environmental Technology (Misaelides, P., Macasek, F., Pinnavaia, T.J. & Colella, C., editors). Kluwer Academic Press, Dordrecht, The Netherlands.Google Scholar
Šucha, V., Kraus, I., Mosser, C., Hroncová, Z., Soboleva, K.A. & Širáňová, V. (1992) Mixed- layer illite/ smectite from the DolnáVes hydrothermal deposit, The Western Carpathians, Kremnica Mts. Geol. Carpathica – Series Clays, 43, 13–19.Google Scholar
Šucha, V., Środoń, J., Elsass, F. & McHardy, W.J. (1996) Particle shape versus coherent scattering domain of illite/smectite: Evidence from HRTEM of DolnáVes clays. Clays Clay Miner. 44, 665–671.CrossRefGoogle Scholar
Tessier, D. (1984) Étude experimental de l’ organisation des materiaux argileux. Dr. Science thesis, Univ. Paris VII, INRA publ. 361 pp.Google Scholar
Wilson, M.L. (1987) Soil Smectites and Related Interstratified Minerals: Recent developments. Pp. 167–173 in: Proc. Int. Clay Conf., Denver, 1985. (Shultz, L.G., van Olphen, H. & Mumpton, F.A., editors). Clay Minerals Society, Bloomington, Indiana.Google Scholar
Wilson, M.L. & Nadeau, P. (1985) Interstratified clay minerals and weathering processes. Pp. 97–119 in. The Chemistry of Weathering (Drever, J.I., editor). NATO ASI Series C, Vol. 149. D. Reidel Publishing Company, Dordrecht, The Netherlands.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 4 *
View data table for this chart

* Views captured on Cambridge Core between 09th July 2018 - 22nd January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-gtgjg Total loading time: 0.397 Render date: 2021-01-22T23:54:23.056Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Weathering of smectite and illite- smectite under temperate climatic conditions
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Weathering of smectite and illite- smectite under temperate climatic conditions
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Weathering of smectite and illite- smectite under temperate climatic conditions
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *