Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-bjz6k Total loading time: 0.563 Render date: 2022-05-19T06:29:46.234Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Phyllosilicates and other layer-structured materials in stony meteorites*

Published online by Cambridge University Press:  09 July 2018

D. J. Barber*
Affiliation:
Physics Department, University of Essex, Colchester, Essex CO4 3SQ

Abstract

Current thinking regarding the possible origins and probable evolutionary histories of meteorites is summarized. Selected data concerning the composition, petrology and other characteristics of the CI and CM groups of stony meteorites in which layered minerals principally occur are then presented. Layered compounds, mainly phyllosilicates, are shown to form a major part of the fine-grained matrix of the CI and CM meteorites, which are classified as carbonaceous chondrites. The results of recent investigations of matrix mineralogy are reviewed, with particular emphasis on the findings of electron microscopy. Several forms of Fe-Mg-serpentine have been identified as the principal phyllosilicates. ‘Poorly-characterized phases’ in CM meteorites have proved to be tochilinite and intergrowths of tochilinite with serpentines. The results generally indicate that the phyllosilicates and most other matrix minerals formed by aqueous alteration in the regoliths of the CI and CM parent bodies; but there is isotopic evidence for the incorporation of components and possibly mineral grains which predate the solar nebula. It is concluded that more detailed chemical and mineralogical information about the phyllosilicates and associated minerals will enable useful constraints to be placed on the possible identities of their precursors and the environments in which both they and the matrix minerals formed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This is an expanded version of an invited paper presented to the Clay Minerals Group of the Mineralogical Society on 9 November 1984.

References

Aannestad, P.A. & Purcell, E.M. (1973) Interstellar grains. Ann. Rev. Astron. Astrophys. 11, 309.CrossRefGoogle Scholar
Ahrens, L.H., Willis, J.P. & Erlank, A.J. (1973) The chemical composition of Kainsaz and Efremovka. Meteorities 8, 133140.CrossRefGoogle Scholar
Akai, J. (1980) Tubular form of interstratified mineral consisting of a serpentine-like layer plus two bruref-like sheets newly found in the Murchison (C2) meteorite. Mere. Nat. Inst. Polar Res., Special Issue No. 17, 299310. Tokyo.Google Scholar
Akai, J. (1985) Proc. 10th Symposium on Antarctic Meteorites. Nat. Ins. Polar Res., Tokyo.Google Scholar
Alfven, H. & Arrhenius, G. (1976) Evolution of the Solar System. NASA Special Publ. 345, US Govt. Printing Office, Washington, DC, 599 pp.Google Scholar
Anders, E. (1963) On the origin of carbonaceous chondrites. N.Y. Annals Acad. Sci. 108, 514533.CrossRefGoogle ScholarPubMed
Anders, E. (1964) Origin, age and composition of meteorites. Space Sci. Rev. 3, 583714.CrossRefGoogle Scholar
Anders, E. (1971). How well do we know ‘cosmic’ abundances? Geochim. Cosmochim Acta 55, 516522.CrossRefGoogle Scholar
Anders, E., Hayatsu, R. & Studier, M.H (1973) Organic components in meteorites. Science 182, 781790.CrossRefGoogle Scholar
Anders, E. (1975) DO stony meteorites come from comets?. Icarus 24, 363371.CrossRefGoogle Scholar
Anders, E. (1981) Noble gases in meteorites: evidence for presolar matter and superheavy elements. Proc. R. Soc. Lond. A374, 207238.CrossRefGoogle Scholar
Anders, E. & Ebihara, M. (1982) Solar-system abundances of the elements. Geochim. Cosmochim. Acta 46, 23632380.CrossRefGoogle Scholar
Ashworth, J.R. & Hutchison, R. (1975) Water in non-carbonaceous stony meteorites. Nature 256, 714715.CrossRefGoogle Scholar
Barber, D.J. (1970) Thin foils of non-metals made for electron microscopy by sputter etching. J. Mater. Sci. 5, 18.CrossRefGoogle Scholar
Barber, D.J. (1977) The matrix of C2 and C3 carbonaceous chondrites. Meteoritics 12, 172173.(Abstract).Google Scholar
Barber, D.J. (1981) Matrix phyllosilicates and associated minerals in C2M carbonaceous chondrites. Geochim. Cosmochim. Acta 45, 945970.CrossRefGoogle Scholar
Barber, D.J., Freeman, L.A. & Bourdillon, A. (1983) Fe-Ni-S-O layer phase in C2M carbonaceous chondrites-—a hydrous sulphide. Nature 305, 295297.CrossRefGoogle Scholar
Barber, D.J. (1983) The significance of mineralogies and microstructures in C2M carbonaceous chondrites. Proc. 7th Int. Conf. on High Voltage Electron Micros., Berkeley, 341346. Lawrence Livermore Laboratory, Berkeley, Calif.Google Scholar
Barnes, I., O'Neil, J.R. & Trescases, J.J. (1978) Present day serpentinization in New Caledonia, Oman and Yugoslavia. Geochim. Cosmochim. Acta 42, 144145.CrossRefGoogle Scholar
Barshay, S.S. & Lewis, J.S. (1976) Chemistry of primitive solar material. Ann. Rev. Astron. Astrophys. 14, 81.CrossRefGoogle Scholar
Bass, M.N. (1970) Textural relations of sulfide, sulfate and sulphur in Orgeuil meteorite. Meteoritics 5, 180181.Google Scholar
Bass, M.N. (1971) Montmorillonite and serpentine in Orgeuil meteorite. Geochim. Cosmochim. Acta 35, 139148.CrossRefGoogle Scholar
Bauman, A.J., Devaney, J.R. & Bollin, E.M. (1973) Allende meteorite carbonaceous phase: intractable nature and scanning electron morphology. Nature 241, 264267.CrossRefGoogle Scholar
Bates, T.F. (1958) Selected Electron Micrographs of Clays. Circular No. 51, College of Mineral Industries. Penn. State Univ.Google Scholar
Beauchamp, R.I-I. & Williford, J.F. (1974) Metallographic methods applied to ultrathinning lunar rocks, meteorites, fossils and other brittle materials for optical microscopy. Pp. 233249 in: Metallographic Specimen Preparation: Optical and Electron Microscopy (McCall, J.M. & Mueller, W.M., editors). Plenum Press, London and New York.CrossRefGoogle Scholar
Begemann, F. (1980) Isotopic anomalies in meteorites. Reports Prog. in Phys. 43, 13091356.CrossRefGoogle Scholar
Black, D. (1972) On the origins of trapped helium, neon and argon isotopic variations in meteorites-—II. Carbonaceous meteorities. Geochim. Cosmochim. Acta 36, 377394.CrossRefGoogle Scholar
Blander, M. & Katz, J.L. (1967) Condensation of primordial dust. Geochim. Cosmochim. Acta 31, 10251034.CrossRefGoogle Scholar
Boström, K. & Fredriksson, K. (1966) Surface conditions of the Orgeuil meteorite parent body as indicated by mineral associations. Smithson Misc. Collect. 151, (No. 3), 139 .Google Scholar
Berger, I.A., Zubovic, P., Chandler, J.C. & Clarke, R.S. (1972) Occurrence and significance of formaldehyde in the Allende carbonaceous chondrite. Nature 236, 155158.CrossRefGoogle Scholar
Brindley, G.W. & Youell, R.F. (1953) Ferrous chamosite and ferric chamosite. Mineral. Mag. 30, 5770.Google Scholar
Brownlee, D.E., Ferry, G.V. & Tomandl, D.A. (1976) Stratospheric aluminium oxide. Science 191, 12701271.CrossRefGoogle Scholar
Brownlee, D.E. (1978) Microparticle studies by sampling techniques. Pp. 295336 in: Cosmic Dust (McDonnell, J. A. M., editor). J. Wiley, London.Google Scholar
Bunch, T. & Reid, A. (1975) The nakhlites. Part I: Petrography and mineral chemistry. Meteoritics 10, 303315.CrossRefGoogle Scholar
Bunch, T.E., Chang, S., Frick, U., Neil, J. & Moreland, G. (1979) Carbonaceous chondrites-—I. Characterization and significance of carbonaceous chondrite (CM) xenoliths in the Jodzie howardite. Geochim. Cosmochim. Acta 43, 17271742.CrossRefGoogle Scholar
Bunch, T.E. & Chang, S. (1980) Carbonaceous chondrites-—II. Carbonaceous chondrite phyllosilicates and light element geochemistry as indicators of parent body processes and surface conditions. Geochim. Cosmochim. Acta 44, 15431578.CrossRefGoogle Scholar
Caillère, S. & Rautureau, M. (1974) Détermination des silicates phylliteux des meteorites carbonées par microscopie et microdiffraction électroniques. C. R. Acad. Sci. D279, 539542.Google Scholar
Cameron, A.G.W. (1973) Accumulation processes in the primitive solar nebula. Icarus 18, 407450.CrossRefGoogle Scholar
Cameron, A.G.W. (1975) The origin and evolution of the Solar system. Sci. Amer. 233, Sept., 6675.CrossRefGoogle Scholar
Cameron, A.G.W. & Truran, J.W. (1977) The supernova trigger for formation of the solar system. Icarus 30, 447461.CrossRefGoogle Scholar
Chang, S., Mack, R. & Lennon, K. (1978) Carbon chemistry of separated phases of Murchison and Allende meteorites. Lunar and Planetary Science IX 157159. Lunar and Planetary Institute, Houston.Google Scholar
Chapman, C.R. (1976) Asteroids as meteorite parent bodies: the astronomical perspective. Geochim. Cosmochim. Acta 40, 701719.CrossRefGoogle Scholar
Christophe-Michel-Levy, M. (1969) Étude minéralogique de la chondrite CIII de Lancé. Comparaison avec d'autres meteorites du même groupe. Pp. 492499 in: Meteorite Research (Millman, P. M., editor). Van Reidel, Dordrecht.CrossRefGoogle Scholar
Clark, A.H. (1970) A probable second occurrence of Jambor's ‘fibrous iron sulfide'.Am. Miner. 55, 283285.Google Scholar
Clayton, R.N., Grossman, L. & Mayeda, T.K. (1973) A component of primitive nuclear composition in carbonaceous meteorites. Science 182, 485488.CrossRefGoogle ScholarPubMed
Clayton, D.D. (1975) Extinct radioactivities: trapped residuals of presolar grains. Astrophys. J. 199, 765 769.CrossRefGoogle Scholar
Clayton, D.D. (1977a) Solar system isotopic anomalies: supernova neighbor or presolar carriers? Icarus 32, 255269.CrossRefGoogle Scholar
Clayton, D.D. (1977b) Cosmoradiogenic ghosts and the origin of Ca, Al-rich inclusions. Earth Planet. Sci. Lett. 35, 398410.CrossRefGoogle Scholar
Clayton, R.N., Onuma, N. & Mayeda, T.K. (1976) A classification of meteorites based on oxygen isotopes. Earth Planet. Sci. Lett. 30, 1018.CrossRefGoogle Scholar
Clayton, R.N., Onuma, N., Grossman, L. & Mayeda, T.K. (1977) Distribution of the pre-solar component in Allende and other carbonaceous chondrites. Earth Planet. Sci. Lett. 34, 209224.CrossRefGoogle Scholar
Clayton, R.N. & Mayeda, T.K. (1977) Anomalous anomalies in carbonaceous chondrities. Pp. 193195 in: Lunar Science VIII. Lunar and Planet. Sci. Inst., Houston.Google Scholar
Clayton, R.N. & Mayeda, T.K. (1984) The oxygen isotope record in Murchison and other carbonaceous chondrites. Earth Planet. Sci. Lett. 67, 151161.CrossRefGoogle Scholar
Comer, J.J. (1959) The electron microscope in the study of minerals and ceramics. Spec. Techn. Pubis. A.S. T.M. 257, 94120.Google Scholar
Cressey, B.A. & Zussmann, J. (1976) Electron microscopic studies of serpentinites. Can. Miner. 14, 307313.Google Scholar
Day, K.L. (1974) A possible identification of the 10-micron ‘silicate’ feature. Astrophys. J. 192, L15L17.CrossRefGoogle Scholar
Day, K.L. (1976) Synthetic phyllosilicate and the matrix material of CI and C2 chondrites. Icarus 27, 561568.CrossRefGoogle Scholar
Dodd, R.T. (1965) Preferred orientation of chondrules in chondrites. Icarus 4, 308316.CrossRefGoogle Scholar
Dodd, R.T. (1981) Meteorites. Cambridge University Press 368 pp.Google Scholar
Dufresne, E.R. & Anders, E. (1962) On the chemical evolution of the carbonaceous chondrites. Geochim. Cosmochim. Acta 26, 10851114.CrossRefGoogle Scholar
Evans, H.T., Milton, C., Chao, E.C.T., Adler, I., Mead, C., Ingram, B. & Berner, R.A. (1964) Valeriite and the new iron sulfide, mackinawite. U.S. Geol. Surv. Prof. Pap. 47J-D, D64D69.Google Scholar
Fish, R.A., Goles, G.G. & Anders, E. (1960) The record in the meteorites. III. On the development of meteorites in asteroidal bodies. Astrophys. J. 132, 243258.CrossRefGoogle Scholar
Fodor, R.V. & Keil, K. (1976) Carbonaceous and non-carbonaceous lithic fragments in the Plainview, Texas, chondrite: origin and history. Geochim. Cosmochim. Acta 40, 177190.CrossRefGoogle Scholar
Folinsbee, R.E., Douglas, J.A.V. & Maxwell, J.A. (1967) Revelstoke, a new Type 1 carbonaceous chondrite. Geochim. Cosmochim. Acta 3l, 16251635.CrossRefGoogle Scholar
Fredriksson, K. (1963) Chondrules and the meteorite parent bodies. Trans. N.Y. Acad. Sci. 25, 756–679.CrossRefGoogle Scholar
Fredriksson, K., Noonan, A.F., Nelen, J. & Beauchamp, R. (1978) Ultrathin sections: an apocalyptic view of chondrules and chondrites. Meteoritics 13, 462464.Google Scholar
Frick, U. & Moniot, R.K. (1976) Noble gases in carbonaceous residues from the Orgeuil and Murray meteorites. Meteoritics 11, 281282.Google Scholar
Frick, U., Mack, R. & Chang, S. (1979) Noble gas trapping and fractionation during synthesis of carbonaceous matter. Proc. 10th Lunar and Planet. Sci. Conf. 2, 19611973. Pergamon Press.Google Scholar
Fuchs, L.H., Olsen, E. & Jensen, K.J. (1973) Mineralogy, mineral-chemistry, and composition of the Murchison (C2) meteorite. Smithson. Contrib. Earth Sci. 10,39 pp.Google Scholar
Fujimura, A., Kato, M. & Kumazawa, M. (1982) Preferred orientation of phyllosilicates in Yamamoto —74642 and —74662, in relation to deformation of C2 chondrites. Mere. Nat. Inst. Polar Res. Tokyo, Spec. Issue 25, 207215.Google Scholar
Fujimura, A., Kato, M. & Kumazawa, M. (1983) Preferred orientation of phyllosilicate [001] in matrix of Murchison meteorite and possible mechanisms of generating the oriented texture in chondrites. Earth Planet. Sci. Lett. 66, 2532.CrossRefGoogle Scholar
Gibson, E.K., Moore, C.B. & Lewis, C.F. (1971) Total nitrogen and carbon abundances in carbonaceous chondrites. Geochim. Cosmochim. Acta 35, 599604.CrossRefGoogle Scholar
Gillett, F.C., Forrest, W.J., Merrill, K.M., Capps, R.W. & Soifer, B.T. (1975) The 8-13 µ spectra of compact HII regions. Astrophys. J. 200, 609620.CrossRefGoogle Scholar
Gooding, J.L. (1984) Aqueous alteration on meteorite parent bodies: possible role of ‘unfrozen’ water and the antarctic meteorite analogy. Meteoritics 19, 228229.Google Scholar
Green, H.W., Radcliffe, N.Y. & Heuer, A.H. (1971) Allende meteorite: a high voltage electron petrographic study. Science 172, 936939.CrossRefGoogle ScholarPubMed
Grossman, L. (1972) Condensation in the primitive solar nebula. Geochim. Cosmochim. Acta 36, 597619.CrossRefGoogle Scholar
Harris, D.C. & Vaughan, D.J. (1972) Two fibrous iron sulfides and valleriite from Cyprus with new data on valleriite. Am. Miner. 57, 10371053.Google Scholar
Herndon, J.M. & Wilkening, L.L. (1978) Conclusions derived from the evidence on accretion in meteorites. Pp. 502515 in: Protostars and Planets (Gehrels, T., editor). Univ. of Arizona Press, Tucson, Arizona.Google Scholar
Heymann, D. (1978) Solar gases in meteorites. The origin of chondrites and C1 carbonaceous chondrites. Meteoritics 13, 291304.CrossRefGoogle Scholar
Holweger, H. (1977) The solar Na/Ca and S/Ca ratios: a close comparison with carbonaceous chondrites. Earth Planet. Sci. Lett. 34, 152154.CrossRefGoogle Scholar
Housen, K.R., Wilkening, L.L., Chapman, C.R. & Greenberg, R. (1979) Asteroidal regoliths. Icarus 39, 317351.CrossRefGoogle Scholar
Housen, K.R. & Wilkening, L.L. (1982) Regoliths on small bodies in the solar system. Ann. Rev. Earth Planet. Sci. 10, 355376.CrossRefGoogle Scholar
Hutchison, R. (1983) The Search for Our Beginning. British Museum (Natural History) and Oxford Oxford University Press, 164 pp.Google Scholar
Iijima, S. & Buseck, P.R. (1978) Experimental study of disordered polymorphs of micas by high resolution microscopy. Acta Cryst. A34, 709719.CrossRefGoogle Scholar
Jambor, J.L. (1969) Coalignite from the Muskox Intrusion, North-West Territories. Am. Miner. 54, 437 447.Google Scholar
Jambor, J.L. (1976) New occurrences of the hybrid sulfide tochilinite. Geol Surv. Canada 76-1B, 6569.Google Scholar
Kerridge, J.F. (1964) Low-temperature minerals from the fine-grained matrix of some carbonaceous meteorites. Ann. N. Y. Acad. Sci. 119, 4153.CrossRefGoogle Scholar
Kerridge, J.F. (1969) The use of selected area diffraction in meteorite mineralogy. Pp. 500504 in: Meteorite Research (Millman, P., editor). Van Reidel, Dordrecht.CrossRefGoogle Scholar
Kerridge, J.F. (1970) Some observations on the nature of magnetite in the Orgeuil meteorite. Earth Planet. Sci. Lett. 9, 299306.CrossRefGoogle Scholar
Kerridge, J.F. (1976) Major element composition in phyllosilicates in the Orgeuil carbonaceous meteorite. Earth Planet. Sci. Lett. 29, 194200.CrossRefGoogle Scholar
Kerridge, J.F. (1977) Correlation between nickel and sulfur abundancies in Orgeuil phyllosilicates. Geochim. Cosmochim. Acta 41, 11631164.CrossRefGoogle Scholar
Kerridge, J.F., Macdougall, J.D. & Marti, K. (1978) Clues to the origin of sulfide materials in CI chondrites. Meteoritics 13, 512513.Google Scholar
Kerridge, J.F. & Bunch, T.E. (1979) Aqueous activity on asteroids: evidence from carbonaceous meteorites. P. 745 in: Asteroids (Gehrels, T., editor). Univ. of Arizona Press, Tucson, Arizona.Google Scholar
Kerridge, J.F., Mackay, A.L. & Boynton, W.V. (1979) Magnetite in CI carbonaceous meteorites: origin by aqueous activity on a planetesimal surface. Science 205, 395397.CrossRefGoogle ScholarPubMed
Kerridge, J.F. & Macdougall, J.D. (1984) Evolutionary history of CI and CM chondrites. Meteoritics 19, 250251.(Abstract).Google Scholar
Knacke, R.F. (1978) Mineralogical similarities between interstellar dust and primitive solar system material. Pp. 112113 in: Protostars and Planets (Gehrels, T., editor). Univ. of Arizona Press, Tuscon, 756 pp.Google Scholar
Kornacki, A.S. & Wood, J.A. (1984) The mineral chemistry and origin of inclusion matrix and meteorite matrix in the Allende CV3 chondrite. Geochim. Cosmochim. Acta 48, 16631676.CrossRefGoogle Scholar
Kothari, B.K., Marti, K., Niemeyer, S., Regnier, S. & Stephens, J.R. (1979) Noble gas trapping during condensation: a laboratory study. Lunar and Planetary Science X, 682684. Lunar and Planetary Sci. Inst., Houston.Google Scholar
Kung, C. & Clayton, R.N. (1978) Nitrogen abundances and isotopic compositions in stony meteorites. Earth Planet. Sci. Lett. 38, 421435.CrossRefGoogle Scholar
Kurat, G. (1975) Der Köhlige Chondrit Lancé: eine petrologische Analyse der Komplexen Genese eines Chondriten. Tschermaks Mineral. Petrog. Mitt. 22, 3878.CrossRefGoogle Scholar
Kvasha, L.G. (1948) Investigation of the stony meteorite, Staroye Boriskino. Meteoritika 4, 8396.Google Scholar
Larimer, J.W. (1967) Chemical fractionations in meteorites-—I. Condensation of the elements. Geochim. Cosmochim. dcta 31, 12151238.CrossRefGoogle Scholar
Lee, T., Pappanastassiou, D.A. & Wasserburg, G.J. (1976) Demonstration of 26Mg excess in Allende and evidence for 26Al. Geophys. Res. Lett. 109112.Google Scholar
Lee, T., Pappanastassiou, D.A. & Wasserburg, G.J. (1977) Aluminium-26 in the early solar system: fossil or fuel? Astrophys. J. Lett. 211, L107L110.CrossRefGoogle Scholar
Lewis, R.S., Srinivasan, B. & Anders, E. (1975) Host phase of a strange xenon component in Allende. Science 190, 12511262.CrossRefGoogle Scholar
Lewis, R.S., Gros, J. & Anders, E. (1977) Isotopic anomalies of noble gases in meteorites and their origins-—2. Separated minerals from Allende. J. Geophys. Res. 82, 779792.CrossRefGoogle Scholar
Lewis, R.S., Matsuda, J., Whittaker, A.G., Watts, E.J. & Anders, E. (1980) Carbynes: carriers of primodial noble gases in meteorites. Lunar and Planetary Science XI, 624625. Lunar and Planetary Institute, Houston.Google Scholar
Lord, H.C. (1965) Molecular equilibria and condensation in a solar nebula and cool stellar atmospheres. Icarus 4, 279288.CrossRefGoogle Scholar
Lumpkin, G.R. (1981) Electron microscopy of carbonaceous matter in Allende acid residues. Proc. 12th Lunar and Planet. Sci. Conf., 11531166. Pergamon Press, Oxford & New York.Google Scholar
Martin, P.M., Mills, A.A. & Walker, E. (1975) Preferred orientation in four C3 chondritic meteorites. Nature 247, 3748.CrossRefGoogle Scholar
Martin, P.M. & Mills, A.A. (1981) Preferred chondrule orientation in meteorites. Earth Planet. Sci. Lett. 51, 1825.CrossRefGoogle Scholar
Mason, B. (1962) The carbonaceous chondrites. Space Science Reviews 1,621646.CrossRefGoogle Scholar
Macdougall, J.D. & Kothari, B.K. (1976) Formation chronology for C2 meteorites. Earth Planet. Sci. Lett. 33, 3644.CrossRefGoogle Scholar
Macdougall, J.D. (1979) Refractory-element-rich inclusions in CM meteorites. Earth Planet. Sci. Lett. 42, 16.CrossRefGoogle Scholar
Macdougall, J.D., Lugmair, G.W. & Kerridge, J.F. (1984) Early solar system aqueous activity: Sr isotope evidence from the Orgeuil CI meteorite. Nature 307, 249251.CrossRefGoogle ScholarPubMed
McKee, T.R. & Moore, C.B. (1979) Characterization of submicron matrix phyllosilicates from Murray and Nogoya carbonaceous chondrites. Proc. 10th Lunar Planet. Sci. Conf., 921936. Pergamon Press.Google Scholar
McKee, T.R. & Moore, C.B. (1980) Matrix phyllosilicates of the Antarctic C2 chondrite ALHA 77306. Lunar and Planetary Science XI pp. 703704. Lunar and Planetary Institute, Houston.Google Scholar
McKee, T.R., Moorte, C.B. & Chang, S. (1979) Matrix materials of carbonaceous chondrites (Abstract). I. Lunar and Planetary Science X, 807809. Lunar and Planetary Sci. Inst., Houston.Google Scholar
Mackinnon, I.D.R. & Buseck, P.R. (1979a) High resolution electron microscopy of two stony meteorites: Murchison and Kenna. Proc. 10th Lunar Planet. Sci. Conf., 937949. Pergamon Press.Google Scholar
Mackinnon, I.D.R. & Buseck, P.R. (1979b) New phyUosilicate types in a carbonaceous chondrite matrix. Nature 280, 219220.CrossRefGoogle Scholar
Mackinnon, I.D.R. (1980a) Structures and textures of the Murchison and Mighei carbonaceous chondrite matrices. Proc.11th Lunar Sci. Conf., 839852. Pergamon Press.Google Scholar
Mackinnon, I.D.R. (1980b) Analytical electron microscopy of matrix phases in Murchison and Mighei. Meteoritics 15, 328329.(Abstract).Google Scholar
Mackinnon, I.D.R. (1980) Structures and textures of the Murchison and Mighei carbonaceous chondrites. Proc. 11th Lunar and Planet. Sci. Conf., 839852. Pergamon Press, Oxford and New York.Google Scholar
Mackinnon, I.D.R. (1982) Ordered mixed-layer structures in the Mighei carbonaceous chondrite matrix. Geochim. Cosmochim. Acta 46, 479489.CrossRefGoogle Scholar
Mackinnon, I.D.R. & Zolensky, M.E. (1984) Proposed structures of poorly characterized phases in C2M carbonaceous chondrite matrices. Nature 309, 240242.CrossRefGoogle Scholar
McNaughton, N.J., Borthwick, J., Fallick, A.E. & Pillinger, C.T. (1982) Deuterium enrichments in primitive meteorites. Lunar Planetary Science XIII, 501502. Lunar and Planetary Inst., Houston.Google Scholar
McSween, H.Y. & Richardson, S.M. (1977) The composition of carbonaceous chondrite matrix. Geochim. Cosmochim. Acta 41, 11451161.CrossRefGoogle Scholar
McSween, H.Y. (1979) Are carbonaceous chondrites primitive or processed? A review. Rev. Geophys. and Space Phys. 17, 10591078.CrossRefGoogle Scholar
Middleton, A.P. & Whittaker, E.J.W. (1976) The structure of Povlen-type chrysotile. Can. Miner. 14, 301306.Google Scholar
Moody, J.B. (1976) Serpentinization: a review. Lithos 9, 125138.CrossRefGoogle Scholar
Müller, W.F., Kurat, G. & Kracher, A. (1977) Crystal structure and composition of cronstedtite from the Cochabamba carbonaceous chondrite. Meteoritics 12, 322 (Abstract).Google Scholar
Muller, W.F., Kurat, G. & Kracher, A. (1979) Chemical and crystallographic study of cronstedtite in the matrix of the Cochabamba (CM2) carbonaceous chondrite. Tschermaks Mineral. Petrogr. Mitt. 26, 293304.CrossRefGoogle Scholar
Nagy, B., Meinschein, W.G. & Hennessy, D.J. (1963a) Aqueous, low temperature environment of the Orgeuil meteorite parent body. Am. N. Y. Acad. Sci. 108, 534552.CrossRefGoogle ScholarPubMed
Nagy, B., Fredriksson, K., Urey, H.C., Claus, G., Anderson, C.A. & Percy, J. (1963b) Electron probe microanalysis of organized elements in the Orgeuil meteorite. Nature 198, 121125.CrossRefGoogle Scholar
Nagy, B. & Anderson, C.A. (1964) Electron probe microanalysis of some carbonate, sulphate, and phosphate minerals in the Orgeuil meteorite. Am. Miner. 49, 17301736.Google Scholar
Nagy, B. (1966) Investigation of the Orgeuil carbonaceous meteorite. Geol. Foren. Stockholm Forh. 88, 235272.CrossRefGoogle Scholar
Nagy, B. (1975) Carbonaceous Meteorites. Elsevier Publishing Co., Amsterdam, 747 pp.Google Scholar
Neal, C. & Stanger, G. (1984) Calcium and magnesium hydroxide precipitation from alkaline groundwaters in Oman, and their significance to the process of serpentinization. Mineral. Mag. 48, 237242.CrossRefGoogle Scholar
Nozette, S. & Wilkening, L.L. (1982) Evidence for aqueous alteration in a carbonaceous xenolith from the Plainview (HS) chondrite. Geochim. Cosmochim. Acta 46, 557563.CrossRefGoogle Scholar
Olsen, E. & Grossman, L. (1978) On the origin of isolated olivine grains in type 2 carbonaceous chondrites. Earth Planet. Sci. Lett. 41, 111127.CrossRefGoogle Scholar
Ott, U., Mack, R. & Chang, S. (1981) Noble-gas-rich separates from the Allende meteorite. Geochim. Cosmochim. Acta 45, 17511788.CrossRefGoogle Scholar
Organova, N.I., Genkin, A.D., Drits, V.A., Dmitrik, A.L. & Kuzimina, O.V. (1971) Tochilinite: a new sulfide hydroxide of iron and magnesium. Zap. Mineral. obschestra 4, 477487.Google Scholar
Organova, N.I., Drits, V.A. & Dmitrik, A.L. (1974) Selected area electron diffraction study of a type II ‘valleriitedike’ mineral. Am. Miner. 59, 190200.Google Scholar
Penman, J.M. (1976) Results of infrared reflectivity measurements on astronomically interesting silicates. Monthly Not. Roy. Astron. Soc. 175, 149156.CrossRefGoogle Scholar
Pillinger, C. (1984) Light element stable isotopes in meteorites. Geochim. Cosmochim. Acta 48, 2739 2768.CrossRefGoogle Scholar
Pisani, F. (1864) Etude chimique et analyse de l'aerolithe d'Orgeuil. C. R. Acad. Sci. Franç. 59, 132.Google Scholar
Ramdohr, P. (1973) The Opaque Minerals in Stony Meteorites. Akademie Verlag, Berlin. 245 pp.Google Scholar
Reynolds, J.H. (1967) Isotopic abundance anomalies in the solar system. Ann. Rev. Nuclear Sci. 17, 253316.CrossRefGoogle Scholar
Reynolds, J.H., Frick, U., Neil, J.M. & Phinney, D.L. (1978) Rare-gas-separates from carbonaceous chondrites. Geochim. Cosmochim. Acta 42, 17751797.CrossRefGoogle Scholar
Richardson, S. & McSween, H.Y. (1978) Textural evidence bearing on the origin of isolated olivine crystals in C2 carbonaceous chondrites. Earth Planet. Sci. Lett. 37, 485491.CrossRefGoogle Scholar
Richardson, S. (1978) Vein formation in the C1 carbonaceous chondrites. Meteoritics 13, 141160.CrossRefGoogle Scholar
Richardson, S.M. (1981) Alteration of mesostasis in chondrules and aggregates from three C2 carbonaceous chondrites. Earth Planet. Sci Lett. 52, 6775.CrossRefGoogle Scholar
Rietmeijer, F.J.M. & Mackinnon, I.D.R. (1985) Poorly graphitized carbon as a new cosmothermometer for primitive extraterrestrial materials. Nature 315, 733736.CrossRefGoogle Scholar
Rucklidge, J.C. & Zussmann, J. (1965) The crystal structure of the serpentine mineral, lizardite Mg3Si2O5-(OH)4 . Acta Cryst. 19, 381389.CrossRefGoogle Scholar
Sakata, A., Nakagawa, N., Iguchi, T., Isobe, S., Morimoto, M., Hoyle, F. & Wickramaslnghe, N.C. (1977) Spectroscopic evidence for interstellar grain clumps in meteoritic inclusions. Nature 266, 241.CrossRefGoogle Scholar
Simmonds, P.G., Bauman, A.J., Bollin, E.M., Gelp, E. & Oro, J. (1969) The unextractable organic fraction of the Pueblito de Allende meteorite: evidence for its indigenous nature. Proc. Natl. Acad. Sci. USA 64, 10271034.CrossRefGoogle Scholar
Smith, P.P.K. & Buseck, P.R. (1981a) Graphitic carbon in the Allende meteorite: a microstructural study. Science 212, 322324.CrossRefGoogle ScholarPubMed
Smith, P.P.K. & Buseck, P.R. (1981b) Carbon in the Allende meteorite: Evidence for poorly graphitized carbon rather than carbyne. Proe. 12th Lunar and Planet. Sci Conf. 11671175. Pergamon Press, Oxford & New York.Google Scholar
Steadman, R. & Nuttall, P.M. (1963) Polymorphism in cronstedtite. Acta Cryst. 16, 1.CrossRefGoogle Scholar
Steadman, R. & Nuttall, P.M. (1964) Further polymorphism in cronstedtite. Aeta Cryst. 17, 404.CrossRefGoogle Scholar
Swart, P.K., Grady, M.M. & Pillinger, C.T. (i982) Isotopically distinguishable carbon phases in the Allende meteorite. Nature 297, 381383.CrossRefGoogle Scholar
Swart, P.K., Grady, M.M., Pillinger, C.T., Lewis, R.S. & Anders, E. (1983) Interstellar carbon in meteorites. Science 220, 406410.CrossRefGoogle ScholarPubMed
Tomeoka, K. & Buseck, P.R. (1982a) Intergrown mica and montmorillonite in the Allende carbonaceous chondrite. Nature 299, 326327.CrossRefGoogle Scholar
Tomeoka, K. & Buseck, P.R. (1982b) An unusual layered mineral in the chondrules and aggregates of the Allende carbonaceous chondrite. Nature 299, 327329.CrossRefGoogle Scholar
Tomeoka, K. & Buseck, P.R. (1983a) An exotic Fe-Ni-S-O layered material: an improved characterization of the ‘poorly characterized phase’ in C2M carbonaceous chondrites. Lunar Planet. Sci. XIV, 789790. Lunar Science Inst., Houston.Google Scholar
Tomeoka, K. & Buseck, P.R. (1983b) A new layered mineral from the Mighei carbonaceous chondrite. Nature 306, 354356.CrossRefGoogle Scholar
Tomeoka, K. & Buseck, P.R. (1984) Transmission electron microscopy of the ‘LOW-CA’ hydrated interplanetary dust particle. Earth Planet. Sci. Lett. 69, 243254.CrossRefGoogle Scholar
Tschermak, G. (1883) Beitrag zur Classification der Meteoriten. Sitzungsber. Akad. Wiss. Wien Math. Naturwiss. K1. 85, 347371.Google Scholar
Urey, H.C. (1965) Meteorites and the moon. Science 147, 12621265.CrossRefGoogle Scholar
Urey, H.C. (1966) Biological material in meteorites: a review. Science 15l, 157166.CrossRefGoogle Scholar
Van Schmus, W.R. & Wood, J.A. (1967) A chemical-petrologic classification for the chondritic meteorites. Geochim. Cosmochim. Acta 31, 747765.CrossRefGoogle Scholar
Van Schmus, W.R. (1969) Mineralogy, petrology, and classification of types 3 and 4 carbonaceous chondrites. Pp. 480491 in: Meteorite Research (Millman, P. M., editor). D. Reidel, Dordrecht.CrossRefGoogle Scholar
Von Michaelis, H., Ahrens, L.H. & Willis, J.P. (1969) The composition of stony meteorites 11. The analytical data and an assessment of their quality. Earth Planet. Sci. Lett. 5, 387394.CrossRefGoogle Scholar
Veblen, D.R. & Buseck, P.R. (1979) Serpentine minerals: intergrowths and new combination structures. Science 206, 17261735.CrossRefGoogle ScholarPubMed
Wasson, J.T. (1972) Formation of ordinary chondrites. Rev. Geophys. Space Phys. 10, 711759.CrossRefGoogle Scholar
Wasson, J.T. (1974) Meteorites, Minerals and Rocks, Vol. 10. Springer-Verlag, Berlin, 316 pp.Google Scholar
Wasson, J.T. (1978) Maximum temperatures during the formation of the solar nebula. Pp. 488501 in: Protostars and Planets (Gehrels, T., editor). University of Arizona Press, Tucson, arizona.Google Scholar
Wasson, J.T. & Wetherill, G.W. (1979) Dynamical, chemical and isotopic evidence regarding the formation locations of asteroids and meteorites. Pp. 926974 in: Asteroids (Gehrels, T., editor). Univ. of Arizona Press, Tucson, Arizona.Google Scholar
Wenk, H.R. (editor) (1976) Electron Microscopy in Mineralogy. Springer-Verlag, Berlin, 564 pp.CrossRefGoogle Scholar
Whipple, F. (1966) Chondrules: suggestions concerning their origin. Science 153, 5456.CrossRefGoogle ScholarPubMed
Wiik, H.B. (1956) The chemical composition of some stony meteorites. Geochim. Cosmochim. Acta 9, 279289.CrossRefGoogle Scholar
Wiik, H.B. (1969) On regular discontinuities in the composition of meteorites. Commentat. Phys. Math. 34, 135145.Google Scholar
Wilkening, L.L. (1973) Foreign inclusions in stony meteorites-—I. Carbonaceous chondritic xenoliths in the Kapoeta howardite. Geochim. Cosrnochim. Aeta 37, 19851989.CrossRefGoogle Scholar
Wilkening, L.L. & Clayton, R.N. (1974) Foreign inclusions in stony meteorites-—lI. Rare gases and oxygen isotopes in a carbonaceous chondritic xenolith in the Plainview gas-rich chondrite. Geochim. Cosmochim Acta 38, 937946.CrossRefGoogle Scholar
Wilkening, L.L. (1977) Meteorites in meteorites: evidence for mixing among the asteroids. Pp. 389395 in: Comets—-Asteroids—-Meteorites (Delsemme, A. H., editor). Univ. of Toledo.Google Scholar
Wilkening, L.L. (1978) Carbonaceous chondrite material in the solar system. Naturwiss. 65, 7379.CrossRefGoogle Scholar
Whittaker, A.G., Watts, E.J., Lewis, R.S. & Anders, E. (1980) Carbynes: carriers of primordial noble gases in meteorites. Science 209, 15121514.CrossRefGoogle ScholarPubMed
Wood, C.A. & Ashwal, L.D. (1981) SNC meteorites: igneous rocks from Mars? Proc. 12th Lunar Planet. Sci Conf. 13591375. Pergamon Press, Oxford and New York.Google Scholar
Wood, J.A. (1963) Origin of chondrules and chondrites. Icarus 2, 152180.CrossRefGoogle Scholar
Wood, J.A. (1968) Meteorites and the Origin of Planets. McGraw-Hill, New York. 117 pp.Google Scholar
Yada, K. (1967) Study of chrysotile asbestos by high resolution electron microscopy. Acta Cryst. 33, 704707.CrossRefGoogle Scholar
Yada, K. & Iishi, K. (1977) Growth and microstructure of synthetic chrysotile. Am. Miner. 62, 958965.Google Scholar
Yang, J. & Epstein, S. (1984) Relic interstellar grains in Murchison meteorite. Nature 311, 544547.CrossRefGoogle Scholar
Zaikowski, A., Knacke, R.F. & Porco, C.C. (1975) On the presence of phyllosilicate minerals in the interstellar grains. Astrophys. Space Sci. 35, 97115.CrossRefGoogle Scholar
Zolensky, M.E. (1984) Hydrothermal alteration of CM carbonaceous chondrites; implications of the identification of tochilinite as one type of meteoritic PCP. Meteoritics 19, 346347.Google Scholar
Zussmann, J., Brindley, G.W. & Comer, J.J. (1957) Electron diffraction studies of serpentine minerals. Am. Miner. 42, 133153.Google Scholar
55
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Phyllosilicates and other layer-structured materials in stony meteorites*
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Phyllosilicates and other layer-structured materials in stony meteorites*
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Phyllosilicates and other layer-structured materials in stony meteorites*
Available formats
×
×

Reply to: Submit a response