Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-18T19:43:47.269Z Has data issue: false hasContentIssue false

Measurement of apparent sintering activation energy for densification of clays

Published online by Cambridge University Press:  16 March 2022

André Biava Comin
Affiliation:
Post-Graduate Program on Materials Science and Engineering – PPGCEM, Universidade do Extremo Sul Catarinense, Avenida Universitária 1105, Criciúma, Santa Catarina, 88806-000, Brazil
Alexandre Zaccaron*
Affiliation:
Post-Graduate Program on Materials Science and Engineering – PPGCEM, Universidade do Extremo Sul Catarinense, Avenida Universitária 1105, Criciúma, Santa Catarina, 88806-000, Brazil
Vitor de Souza Nandi
Affiliation:
Post-Graduate Program on Materials Science and Engineering – PPGCEM, Universidade do Extremo Sul Catarinense, Avenida Universitária 1105, Criciúma, Santa Catarina, 88806-000, Brazil
Jordana Mariot Inocente
Affiliation:
Post-Graduate Program on Materials Science and Engineering – PPGCEM, Universidade do Extremo Sul Catarinense, Avenida Universitária 1105, Criciúma, Santa Catarina, 88806-000, Brazil
Thuani Gesser Muller
Affiliation:
Reactors and Industrial Processes Laboratory – LabRePI, Parque Científico e Tecnológico, Rodovia Jorge Lacerda 3800, Criciúma, Santa Catarina, 88807-400, Brazil
Alexandre Gonçalves Dal Bó
Affiliation:
Post-Graduate Program on Materials Science and Engineering – PPGCEM, Universidade do Extremo Sul Catarinense, Avenida Universitária 1105, Criciúma, Santa Catarina, 88806-000, Brazil
Adriano Michael Bernardin
Affiliation:
Post-Graduate Program on Materials Science and Engineering – PPGCEM, Universidade do Extremo Sul Catarinense, Avenida Universitária 1105, Criciúma, Santa Catarina, 88806-000, Brazil
Michael Peterson
Affiliation:
Post-Graduate Program on Materials Science and Engineering – PPGCEM, Universidade do Extremo Sul Catarinense, Avenida Universitária 1105, Criciúma, Santa Catarina, 88806-000, Brazil Reactors and Industrial Processes Laboratory – LabRePI, Parque Científico e Tecnológico, Rodovia Jorge Lacerda 3800, Criciúma, Santa Catarina, 88807-400, Brazil

Abstract

Clays are raw materials with properties that are necessary for the manufacture of ceramic tiles. The characteristics of clay ceramic raw materials may vary within the same mineral deposit. Clay blending promotes better use of clay reserves, thereby increasing the applicability and life cycle of raw materials. Therefore, it is important to understand the mechanisms controlling the firing of ceramic tiles. In this study, three different clays from a clay deposit were assessed and ten formulations were prepared using the mixture design method. The formulations were analysed using differential thermal and thermogravimetric analyses and dilatometric analysis. Subsequently, the most refractory and fluxing formulations were subjected to thermal tests under various heating rates, similar to the process used for the calculation of apparent sintering activation energy for the densification of clays and for pyroplasticity tests. It is suggested that a mineral deposit can be assessed based on activation energy and thermal kinetics, expanding the alternatives available to the miner through the planning of mixtures with various clays and thus reducing the energy costs of the industrial process.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: João Labrincha

References

Acchar, W., Dultra, E.J.V. & Segadães, A.M. (2013) Untreated coffee husk ashes used as flux in ceramic tiles. Applied Clay Science, 75–76, 141147.CrossRefGoogle Scholar
Alcântara, A.C.S., Beltrão, M.S.S., Oliveira, H.A., Gimenez, I.F. & Barreto, L.S. (2008) Characterization of ceramic tiles prepared from two clays from Sergipe – Brazil. Applied Clay Science, 39, 160165.CrossRefGoogle Scholar
Andreola, F., Martín, M.I., Ferrari, A.M., Lancellotti, I., Bondioli, F., Rincón, J.M. et al. (2013) Technological properties of glass–ceramic tiles obtained using rice husk ash as silica precursor. Ceramics International, 39, 54275435.CrossRefGoogle Scholar
Barreto, I.A.R. & da Costa, M.L. (2018) Viability of Belterra clay, a widespread bauxite cover in the Amazon, as a low-cost raw material for the production of red ceramics. Applied Clay Science, 162, 252260.CrossRefGoogle Scholar
Becker, E., Jiusti, J., Minatto, F.D., Delavi, D.G.G., Montedo, O.R.K. & de Noni Junior, A. (2017) Use of mechanically-activated kaolin to replace ball clay in engobe for a ceramic tile. Cerâmica, 63, 295302.CrossRefGoogle Scholar
Bernardin, A.M., de Medeiros, D.S. & Riella, H.G. (2006) Pyroplasticity in porcelain tiles. Materials Science and Engineering A, 427, 316319.CrossRefGoogle Scholar
Bordeepong, S., Bhongsuwan, D., Pungrassami, T. & Bhongsuwan, T. (2012) Mineralogy, chemical composition and ceramic properties of clay deposits in southern Thailand. Kasetsart Journal – Natural Science, 48, 485500.Google Scholar
Bresciani, A. & Spinelli, B. (2013) Deformação piroplástica em porcelanato durante a queima e variações de planaridade após a queima. Cerâmica Industrial, 18, 1620.CrossRefGoogle Scholar
Cargnin, M., Ulson de Souza, S.M.A.G., de Souza, A.A.U. & de Noni Junior, A. (2011) Determinação de parâmetros cinéticos da sinterização de revestimentos cerâmicos de monoqueima do tipo BIIa. Cerâmica, 57, 461466.CrossRefGoogle Scholar
Cargnin, M., Kammer, E.H., Ulson de Souza, A.A., de Noni Junior, A. & Ulson de Souza, S.M.A.G. (2019) Effect of specimen geometry on kinetics of thermal decomposition of minerals in porous ceramic tiles. International Journal of Applied Ceramic Technology, 16, 10981110.CrossRefGoogle Scholar
Cargnin, M., Ulson de Souza, S.M.A.G., Ulson de Souza, A.A. & de Noni Junior, A. (2015) Modeling and simulation of the effect of the firing curve on the linear shrinkage of ceramic materials: laboratory scale and industrial scale. Brazilian Journal of Chemical Engineering, 32, 433443.CrossRefGoogle Scholar
Chalouati, Y., Bennour, A., Mannai, F. & Srasra, E. (2020) Characterization, thermal behaviour and firing properties of clay materials from Cap Bon Basin, north-east Tunisia, for ceramic applications. Clay Minerals, 55, 351365.CrossRefGoogle Scholar
Comin, A.B., Zaccaron, A., de Souza Nandi, V., Inocente, J.M., Muller, T.G. & Peterson, M. (2021) Characterization and use of clays from the Rio Bonito Formation/Paraná Basin for ceramic industry application. International Journal of Applied Ceramic Technology, 18, 18141824.CrossRefGoogle Scholar
de Oliveira Henriques, J.D., Pedrassani, M.W., Klitzke, W., Mariano, A.B., Vargas, J.V.C. & Vieira, R.B. (2017) Thermal treatment of clay-based ceramic membranes for microfiltration of Acutodesmus obliquus. Applied Clay Science, 150, 217224.CrossRefGoogle Scholar
de Sousa, L.L., Salomão, R. & Arantes, V.L. (2017) Development and characterization of porous moldable refractory structures of the alumina–mullite–quartz system. Ceramics International, 43, 13621370.CrossRefGoogle Scholar
do Livramento, A., Nazário, M.M., Domingos, R.A., de Noni Junior, A., Tassi, R. & Cargnin, M. (2017) Reformulação de massas para pavimentos cerâmicos fabricados pelo processo de monoqueima. Cerâmica Industrial, 22, 3340.CrossRefGoogle Scholar
Dondi, M., Guarini, G., Ligas, P., Palomba, M. & Raimondo, M. (2001) Chemical, mineralogical and ceramic properties of kaolinitic materials from the Tresnuraghes mining district (western Sardinia, Italy). Applied Clay Science, 18, 145155.CrossRefGoogle Scholar
dos Santos Conserva, L.R., Melchiades, F.G., Nastri, S., Boschi, A.O., Dondi, M., Guarini, G. et al. (2017) Pyroplastic deformation of porcelain stoneware tiles: wet vs. dry processing. Journal of the European Ceramic Society, 37, 333342.CrossRefGoogle Scholar
Doppler, G. & Bakker, R.J. (2014) The influence of the α–β phase transition of quartz on fluid inclusions during re-equilibration experiments. Lithos, 198–199, 1423.CrossRefGoogle Scholar
Eliche-Quesada, D., Sandalio-Pérez, J.A., Martínez-Martínez, S., Pérez-Villarejo, L. & Sánchez-Soto, P.J. (2018) Investigation of use of coal fly ash in eco-friendly construction materials: fired clay bricks and silica-calcareous non fired bricks. Ceramics International, 44, 44004412.CrossRefGoogle Scholar
Eren, E., Topate, G. & Kurama, S. (2017) The effects of sintering temperature on phase and pore evolution in porcelain tiles. Ceramics International, 43, 1151111515.Google Scholar
Ferreira, M.M., Varajão, A.F.D.C., Morales-Carrera, A.M., Peralta-Sánchez, M.G. & da Costa, G.M. (2012) Transformações mineralógicas e cristaloquímicas decorrentes dos ensaios termais em argilas cauliníticas ferruginosas. Cerâmica, 58, 105110.CrossRefGoogle Scholar
Friedman, H.L. (2007) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. Journal of Polymer Science Part C: Polymer Symposia, 6, 183195.CrossRefGoogle Scholar
Frizzo, R.G., Zaccaron, A., de Souza Nandi, V. & Bernardin, A.M. (2020) Pyroplasticity on porcelain tiles of the albite–potassium feldspar–kaolin system: a mixture design analysis. Journal of Building Engineering, 31, 101432.CrossRefGoogle Scholar
Galán-Arboledas, R.J., Cotes-Palomino, M.T., Bueno, S. & Martínez-García, C. (2017) Evaluation of spent diatomite incorporation in clay based materials for lightweight bricks processing. Construction and Building Materials, 144, 327337.CrossRefGoogle Scholar
Gardolinski, J.E., Martins Filho, H.P. & Wypych, F. (2003) Comportamento térmico da caulinita hidratada. Química Nova, 26, 3035.CrossRefGoogle Scholar
Gültekin, E.E. (2018) The effect of heating rate and sintering temperature on the elastic modulus of porcelain tiles. Ultrasonics, 83, 120125.CrossRefGoogle Scholar
Güngör, F. (2018) Investigation of pyroplastic deformation of whitewares: effect of crystal phases in the ‘CaO’ based glassy matrix. Ceramics International, 44, 1336013366.CrossRefGoogle Scholar
Jordán, M.M., Boix, A., Sanfeliu, T. & de la Fuente, C. (1999) Firing transformations of cretaceous clays used in the manufacturing of ceramic tiles. Applied Clay Science, 14, 225234.CrossRefGoogle Scholar
Jordán, M.M., Montero, M.A., García-Sánchez, E. & Martínez-Poveda, A. (2020) Firing behaviour of Tertiary, Cretaceous and Permo-Triassic clays from Castellon ceramic cluster (Spain). Applied Clay Science, 198, 105804.CrossRefGoogle Scholar
Jouenne, C.A. (1990) Traité de Céramiques et Matériaux Minéraux. Septima, Paris, France, 657 pp.Google Scholar
Lopez, S.Y.R., Rodríguez, J.S. & Sueyoshi, S.S. (2011) Determination of the activation energy for densification of porcelain stoneware. Journal of Ceramic Processing Research, 12, 228232.Google Scholar
Magalhães, M., Contartesi, F., dos Santos Conserva, L.R., Melchiades, F.G. & Boschi, A.O. (2014) Efeitos do ciclo de queima sobre as temperaturas de mínima absorção de água e máxima densificação de porcelanatos. Cerâmica Industrial, 19, 2025.CrossRefGoogle Scholar
Melchiades, F.G., Boschi, A.O., dos Santos, L.R., Dondi, M., Zanelli, C., Paganelli, M. & Mercurio, V. (2014) Deformação piroplástica de porcelanatos. Cerâmica Industrial, 19, 1317.CrossRefGoogle Scholar
Mendonça, A.M.G.D., Cartaxo, J.M., Menezes, R.R., Santana, L.N.L., Neves, G.A. & Ferreira, H.C. (2012) Expansão por umidade de revestimentos cerâmicos incorporados com residuos de granito e caulim. Cerâmica, 58, 216224.CrossRefGoogle Scholar
Menezes, R.R., de Almeida, R.R., Santana, L.N.L., Ferreira, H.S., Neves, G.A. & Ferreira, H.C. (2007) Utilização do resíduo do beneficiamento do caulim na produção de blocos e telhas cerâmicos. Matéria (Rio de Janeiro), 12, 226236.CrossRefGoogle Scholar
Milak, A. V, Rodrigues, E.P., Ricardo, E.T., Tertuliano, L.A., Jacinto, R.P., Gastaldon, R.S. et al. (2007) Estudo da deformação piroplástica em suportes cerâmicos obtidos com diferentes conteúdos de caulim e quartzo. Cerâmica Industrial, 12, 1721.Google Scholar
Moreno, M.M.T., Bartolomeu, D. & Lima, R.H.C. (2009) Análise do comportamento de queima de argilas e formulações para revestimento cerâmico. Cerâmica, 55, 286295.CrossRefGoogle Scholar
Pardo, F., Meseguer, S., Jordán, M.M., Sanfeliu, T. & González, I. (2011) Firing transformations of Chilean clays for the manufacture of ceramic tile bodies. Applied Clay Science, 51, 147150.CrossRefGoogle Scholar
Perez, F. (2008) Fundentes: como escolher e como usar. Cerâmica Industrial, 13, 3135.Google Scholar
Rambaldi, E., Carty, W.M., Tucci, A. & Esposito, L. (2007) Using waste glass as a partial flux substitution and pyroplastic deformation of a porcelain stoneware tile body. Ceramics International, 33, 727733.CrossRefGoogle Scholar
Rietveld, H.M. (1969) A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 6571.CrossRefGoogle Scholar
Salah, I.B., Sdiri, A., Jemai, M.B.M. & Boughdiri, M. (2018) Potential use of the lower cretaceous clay (Kef area, northwestern Tunisia) as raw material to supply ceramic industry. Applied Clay Science, 161, 151162.CrossRefGoogle Scholar
Sanfeliu, T. & Jordán, M.M. (2009) Geological and environmental management of ceramic clay quarries: a review. Environmental Geology, 57, 16131618.CrossRefGoogle Scholar
Santos, C.P., Oliveira, H.A., Oliveira, R.M.P.B. & Macedo, Z.S. (2016) Caracterização de argilas calcárias utilizadas na produção de revestimentos cerâmicos no Estado de Sergipe – Brasil. Cerâmica, 62, 147156.CrossRefGoogle Scholar
Schmidt-Mumm, A. (1991) Low frequency acoustic emission from quartz upon heating from 90 to 610 °C. Physics and Chemistry of Minerals, 17, 545553.CrossRefGoogle Scholar
Sebastião, R.B., Fernandes, P. & de Souza Nandi, V. (2013) Melhoria da eficiência energética de um forno cerâmico através da troca de queimadores. Cerâmica Industrial, 18, 2430.CrossRefGoogle Scholar
Semiz, B. & Çelik, S.B. (2020) Mineralogical and geochemical characteristics of Belevi clay deposits at Denizli, SW Turkey: industrial raw material potential. Arabian Journal of Geosciences, 13, 313.CrossRefGoogle Scholar
Seynou, M., Millogo, Y., Ouedraogo, R., Traoré, K. & Tirlocq, J. (2011) Firing transformations and properties of tiles from a clay from Burkina Faso. Applied Clay Science, 51, 499502.CrossRefGoogle Scholar
Silva, A.L., Luna, C.B.B., Chaves, A.C. & Neves, G.A. (2018) Avaliação de novos depósitos de argilas provenientes da região sul do Amapá visando aplicação na indústria cerâmica. Cerâmica, 64, 6978.CrossRefGoogle Scholar
Soares, R.A.L., do Nascimento, R.M., Paskocimas, C.A. & Castro, R.J.S. (2014) Avaliação da adição de dolomita em massa de cerâmica de revestimento de queima vermelha. Ceramica, 60, 516523.CrossRefGoogle Scholar
Vaughan, F. (1955) Energy changes when kaolin minerals are heated. Clay Minerals, 2, 265274.CrossRefGoogle Scholar
Vieira, C.M.F. & Monteiro, S.N. (2003) Influência da temperatura de queima na microestrutura de argilas de Campos dos Goytacazes – RJ. Cerâmica, 49, 610.CrossRefGoogle Scholar
Vieira, C.M.F., Sánchez, R. & Monteiro, S.N. (2008) Characteristics of clays and properties of building ceramics in the state of Rio de Janeiro, Brazil. Construction and Building Materials, 22, 781787.CrossRefGoogle Scholar
Wang, H., Zhu, M., Sun, Y., Ji, R., Liu, L. & Wang, X. (2017) Synthesis of a ceramic tile base based on high-alumina fly ash. Construction and Building Materials, 155, 930938.CrossRefGoogle Scholar
Zaccaron, A., de Souza Nandi, V., Dal Bó, M., Peterson, M., Angioletto, E. & Bernardin, A.M. (2020) Characterization and use of clays and argillites from the south of Santa Catarina State, Brazil, for the manufacture of clay ceramics. Clay Minerals, 55, 172183.CrossRefGoogle Scholar
Zanatta, T., Santa, R.A.A.B., Padoin, N., Soares, C. & Riella, H.G. (2021) Eco-friendly ceramic tiles: development based on technical and market demands. Journal of Materials Research and Technology, 11, 121134.CrossRefGoogle Scholar