Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-pcn4s Total loading time: 0.22 Render date: 2022-05-19T08:49:23.948Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Dating thermal anomalies in sedimentary basins: the diagenetic history of clay minerals in the Triassic sandstones of the Paris Basin, France

Published online by Cambridge University Press:  09 July 2018

J. R. Mossmann
Affiliation:
Bureau de Recherche Géologique et Minière, Avenue de Concyr, 45060 Orléans
N. Clauer
Affiliation:
Centre de Géochimie de la Surface, 1 rue Blessig, 67084 Strasbourg, France
N. Liewig
Affiliation:
Centre de Géochimie de la Surface, 1 rue Blessig, 67084 Strasbourg, France

Abstract

Rhaetian (Upper Triassic) sandy horizons were sampled from the Paris Basin from SW to NE, crosscutting the Rhaetian at different depths from outcrop in the NE to 2700 m in the centre of the basin. The smallest day sub-fractions (<0·2 μm) from the deepest samples consist mainly of illite and chlorite having a K-Ar age of 〜190 Ma. Both minerals probably formed under specific hydrothermal conditions at high temperature, but at a burial depth of only 500 m. This thermal event could represent an echo of the "crustal" breakdown of the Northwestern European craton during the opening of the North Atlantic Ocean. Two other generations of illite-smectite mixed-layers formed in the same Rhaetian horizons at somewhat lower temperatures about 150 and 80 Ma ago. The three generations of clay minerals could be characterized and dated because of combined mineralogical, crystallographical and morphological data supporting the dating attempts.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Autran, A., Chiron, J.C., Debeglia, N., Debrand-Passard, S., Gros, Y., Jean, F., Labourguigne, J., Manivit, J., Masse, C. & Megnien, F. (1985) Synthese geologique du Bassin de Paris, 2, Atlas. Structure tectonique, Carte G2. Mem. BRGM, 102.Google Scholar
Bjorlykke, K. (1984) Formation of secondary porosity: how important is it? Am. Assoc. Petrol. Geol. Mem., 37, 277286.Google Scholar
Bjorlykke, K., Aagaard, P., Dypvik, H., Hastings, D.S. & Harper, A.S. (1985) Diagenesis and reservoir properties of Jurassic sandstones from the Haltenbanken area, offshore mid Norway. Pp. 275-286 in: Habitats of Hydrocarbons on the Norwegian Continental Shelf(Spencer, A. M. et al,editors). Norwegian Petroleum Society and Graham & Trotman, London.Google Scholar
Boles, J.E. & Franks, S.G. (1979) Clay diagenesis in Wilcox sandstones of SW Texas: Implication of smectite diagenesis on sandstone cementation. J. Sed. Pet., 49, 55–70.Google Scholar
Bonhomme, M.G. (1982) Age triasique et jurassique des argiles associées aux minéralisations filoniennes et de phénomenes diagenétiques tardifs en Europe de I'Ouest. Contexte géodynamique et implications génétiques. C.R, Acad. Set, Paris,, 294, II, 521524.Google Scholar
Bonhomme, M.G. & Millot, G. (1987) Diagenèse généralisée du Jurassique moyen (170-160 Ma) dans le bassin du Rhône inferieur jusqu'à la bordure des Cévennes (France). Datations K-Ar d'rgiles du Trias et du Lias inférieur. C.R. Acad. Sci., Paris,, 304, II, 431-434.Google Scholar
Bonhomme, M.G., Thuizat, R., Pinault, Y., Clauer, N., Wendling, R. & Winkler, R. (1975) Methode de datation potassium-argon. Appareillage et technique. Note Tech. Inst. Geologie, Univ. Strasbourg,, 3, 53 p.Google Scholar
Bonhomme, M.G., Buhmann, D. & Besnus, Y. (1983) Reliability of K-Ar dating of clays and silicifications associated with vein mineralizations in Western Europe. Geol. Rundsch., 72, 105–117.CrossRefGoogle Scholar
Burley, S.D., Kantorowicz, J.D. & Waugh, B. (1985) Clastic diagenesis. In: Sedimentology, Recent Developments and Applied Aspects.(Brenchley, P.J. & Williams, B.P.J., editors). Blackwell Sci. Publ., Oxford.Google Scholar
Clauer, N. (1976) Géochimie isotopique du strontium des milieux sédimentaires. Application a la géochronologie de la couverture du craton ouest-africain. Sci. Geol. Mem., Strasbourg,, 45, 236 p.Google Scholar
Curnelle, R. & Dubois, P. (1986) Evolution mesozoique des grands bassins sedimentaires fran9ais: bassins de Paris, d'Aquitaine et du Sud-Est. Bull. Soc. Geol. France,, 8, 529–546.Google Scholar
Dunoyer de Segonzac, G. (1969) Les mineraux argileux dans la diagenese. Passage au metamorphisme.These Doc. es- Sci., Univ. Strasbourg, France.Google Scholar
Dunoyer de Segonzac, G. (1970) The transformation of clay minerals during diagenesis and low grade metamorphism: a review. Sedimentology, 15, 281–346.Google Scholar
Eslinger, E. & Sellars B, (1981) Evidence for the formation of illite from smectite during burial metamorphism in the Belt Supergroup, Clark Fork, Idaho. J. Sed. Pet., 51, 203–206.Google Scholar
Foscolos, A.E. & Powell, T.G. (1979) Mineralogical and geochemical transformation of clays during burial- diagenesis (catagenesis): Relation to oil generation. Proc. Int. Clay Conf. Oxford,, 261270.Google Scholar
Houseknecht, D.W. (1984) Influence of grain size and temperature on intergranular pressure solution quartz cementation, and porosity in quartzose sandstones. J. Sed. Pet., 54, 348–362.Google Scholar
Hower, J., Eslinger, E., Hower, M.E. & Perry, E.A. (1976) Mechanism of burial diagenesis of argillaceous sediments: 1. Mineralogical and chemical evidence. Geol. Soc. Amer. Bull., 87, 725–737.2.0.CO;2>CrossRefGoogle Scholar
Jennings, S. & Thompson, G.R. (1986) Diagenesis of Plio-Pleistocene sediments of the Colorado River delta, southern California. J. Sed. Pet., 56, 89–98.Google Scholar
Lahann, R.W. (1978) Smectite diagenesis and sandstone cement: the effect of reaction temperature. J. Sed. Pet., 50, 755–760.Google Scholar
Land, L.S., Milliken, K.L. & McBride, E.F. (1986) Diagenetic evolution of Cenozoic sandstones, Gulf of Mexico sedimentary basin. Sed. Geol., 50, 195225.CrossRefGoogle Scholar
Liewig, N., Clauer, N. & Sommer, F. (1987a) Rb-Sr and K-Ar dating of clay diagenesis in a Jurassic sandstone oil reservoir from the North Sea. Am. Assoc. Petrol. Geol. Bull., 71, 1467–1474.Google Scholar
Liewig, N., Mossmann, J.R. & Clauer, N. (1987b) Datation isotopique K-Ar d^rgiles diagenetiques de reservoirs greseux: Mise en evidence d^nomalies thermiques au Lias inferieur en Europe Nord-Occidentale. C.R. Acad. Sci., Paris,, 304, II, 707710.Google Scholar
Mascle, A. & Cazes, M. (1987) La couverture sedimentaire du Bassin Parisien le long du profil ECORS-Nord de la France. Rev. Inst. Fr. Petr., 42, 303–316.Google Scholar
Mathieu, Y. & Velde, B. (1989) Identification of thermal anomalies using clay mineral composition. Clay Miner., 24, 591–602.CrossRefGoogle Scholar
Morton, J.P. (1985) Rb/Sr evidence for punctuated illite/smectite diagenesis in the Oligocene Frio Formation, Texas Gulf Coast. Geol. Soc. Amer. Bull., 96, 1043–1049.Google Scholar
Mossmann, J.R. Conditions physico-chimiques devolution de reservoirs gr seux. Approche petrologique, mineralogique et isotopique. Application aux gres rhetiens du Bassin de Paris. These Univ. L. Pasteur, Strasbourg, France.Google Scholar
Perry, E. & Hower, J. (1970) Burial diagenesis in Gulf Coast pelitic sediments. Clays Clay Miner., 18, 165–177.CrossRefGoogle Scholar
Pollastro, R.M. (1985) Mineralogical and morphological evidence for the formation of illite at the expense of illite/smectite. Clays Clay Miner., 33, 265–274.CrossRefGoogle Scholar
Pommerol, C. (1974) Le Bassin de Paris. In: Geologie de la France.(J. Debelmas, editor). Doin, Paris.Google Scholar
Porter, E. W. & James, W.C. (1986) Influence of pressure, salinity, temperature and grain size on silica diagenesis in quartzose sandstones. Chem. Geol., 57, 359–369.CrossRefGoogle Scholar
Ramseyer, K. & Boles, J.R. (1986) Mixed-layer illite/smectite minerals in Tertiary sandstones and shales, San Joaquin basin, California. Clays Clay Miner., 34, 115–124.CrossRefGoogle Scholar
Rinckenbach, T. (1988) Diagenese minerale des sediments petroliferes du delta fossile de la Mahakam (Indonesie). Evolution mineralogique et isotopique des composants argileux et histoire thermique. These Univ. L. Pasteur, Strasbourg, France.Google Scholar
Sprunt, E.S. & Nur, A. (1976) Reduction of porosity by pressure-solution: experimental verification. Geology, 4, 463466.2.0.CO;2>CrossRefGoogle Scholar
Steiger, R.H. & Jaeger, E. (1977) Subcommision on Geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Plan. Sci. Letters,, 36, 359–362.CrossRefGoogle Scholar
Trurnit, P. (1968) Pressure solution phenomena in detrital rocks. Sed. Geol., 2, 89–114.CrossRefGoogle Scholar
Velde, B. & Nicot, E. (1985) Diagenetic mineral composition as a function of pressure, temperature and chemical activity. J. Sed. Pet., 55, 541–547.Google Scholar
Velde, B., Suzuki, T. & Nicot, E. (1986) Pressure temperature composition of illite/smectite mixed-layer minerals: Niger delta mudstones and other examples. Clays Clay Miner., 34, 435441.CrossRefGoogle Scholar
Ziegler, P. A. (1982) Geological Atlas of Western and Central Europe. Shell International Petroleum, Maatschappij B.V.Google Scholar
Zinszner, B. & Meynot, C. (1982) Visualisation des proprietes capillaires des roches reservoir. Rev. Inst. Fr. Petr., 37, 337–361.Google Scholar
26
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Dating thermal anomalies in sedimentary basins: the diagenetic history of clay minerals in the Triassic sandstones of the Paris Basin, France
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Dating thermal anomalies in sedimentary basins: the diagenetic history of clay minerals in the Triassic sandstones of the Paris Basin, France
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Dating thermal anomalies in sedimentary basins: the diagenetic history of clay minerals in the Triassic sandstones of the Paris Basin, France
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *