Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T21:34:04.123Z Has data issue: false hasContentIssue false

29Si and 27Al MAS NMR study of the zeolitization of kaolin by alkali leaching

Published online by Cambridge University Press:  09 July 2018

N. Benharrats*
Affiliation:
LPPMC, Département de Chimie, Faculté des Sciences, Université des Sciences et Technologie, BP 1505, AlM'nouer Oran 31000, Algeria
M. Belbachir
Affiliation:
L.C.P. Département de Chimie, Faculté des Sciences, Université d'Es-Senia, BP 1525, Al M'nouerOran 31000, Algeria
A. P. Legrand
Affiliation:
Systèmes Interfaciauxà l'EchelleNanométrique, FRE CNRS 2312, Laboratoire de Physique Quantique, Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, 10 rue Vauquelin 75231, Paris cedex 05, France
J. -B. D'espinose de la Caillerie
Affiliation:
Systèmes Interfaciauxà l'EchelleNanométrique, FRE CNRS 2312, Laboratoire de Physique Quantique, Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, 10 rue Vauquelin 75231, Paris cedex 05, France
*
*E-mail: nassira_benharrats@yahoo.fr

Abstract

The alkali leaching of two aluminosilicates, kaolinite and metakaolinite, with aqueous NaOH has been studied. Both silicates gave hydroxysodalite (HS) with or without the evanescent zeolite NaA. X-ray diffraction and high-resolution 29Si and 27Al MAS-NMR spectroscopy provide information about the reaction sequence of the clay. The conversion starts with the formation of an amorphous gel precursor at a rate which depends on the alkali concentration but not on the choice of kaolinite or metakaolinite as starting material. The rate of zeolitization of this gel is much faster when it is obtained from kaolinite, probably because it is more homogeneous.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrer, R.M. (1982) Hydrothermal Chemistry of Zeolites. Pp. 153159. Academic Press, London.Google Scholar
Breck, D.W. (1964) Zeolite Molecular Sieve-Structure. Pp. 313320, 731, 738 in: Chemistry and Uses. Wiley, New York.Google Scholar
Brindley, G.W. & Brown, G., editors (1980) Crystal Structures of Clay Minerals and their X-ray Identi fication. Pp. 495497. Monograp h 5, Mineralogical Society, London.Google Scholar
Engelhardt, G. & Michel, D. (1987) High Resolution Solid State NMR Study of Silicates and Zeolites. Pp. 205330. J.Wiley & Sons, New York.Google Scholar
Ishida, H. (1988) Interfaces in Polymer, Ceramic and Metal Matrix Composites. Pp. 101108. Elsevier, New York.Google Scholar
Ishida, H. & Kumar, G. (1978) Molecular Characterizati on of Composite Interfaces. Pp. 121127. Plenum, New York.Google Scholar
Jones, F.R. (1989) Interfacial Phenomena in Composite Materials. Pp. 141148. Butterworths, London.Google Scholar
Lambert, W., Millman, S. & Fripiat, J.J. (1989) Revisiting kaolinite dehydroxylation, a 29Si and 27Al MAS NMR study. Journal of the American Chemical Society, 111, 35173522.CrossRefGoogle Scholar
Lippmaa, E., Magi, M., Samoson, A., Engelhardt, G. & Grimer, A.R. (1980) Structural studies of silicates by solid-state high resolution 29Si NMR spectroscopy. Journal of the American Chemical Society, 102, 48894893.CrossRefGoogle Scholar
Lippmaa, E., Magi, M., Samoson, A., Engelhardt, G. & Tarmak, M. (1981) Investigation of the structure of zeolite by solid state high resolution 29Si NMR spectroscopy. Journal of the American Chemical Society, 103, 49924996.CrossRefGoogle Scholar
Lippmaa, E., Samoson, A. & Magi, M. (1986) High resolution 27Al NMR of aluminosilicates. Journal of the American Chemical Society, 108, 17301735.CrossRefGoogle Scholar
MacKenzie, K.J.D., Meinhold, K.R.H., Chakravorty, A.K. & Dafadar, M.H. (1996) Thermal reactions of alkalileached aluminosilicates studied by XRD and solidstate 27Al, 29Si and 23Na MAS NMR. Journal of Materials Chemistry, 6, 833 841.CrossRefGoogle Scholar
Madani, A., Aznar, A., Sanz, J. & Serratosa, J.M. (1990) 29Si and 27Al NMR study of zeolite formation from alkali-leached kaolinites. Influence of thermal preactivation. Journal of Physical Chemistry, 94, 760765.CrossRefGoogle Scholar
Mehring, M. (1983) Principles of High Resolution NMR in Solids, 2nd edition. Pp. 143155. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Percival, H.J., Duncan, J.F. & Foster, P.K (1974) Interpretation of the kaolinite-mullite reaction sequence from Infrared Absorption Spectra. Journal the American Ceramic Society, 57, 57 61.CrossRefGoogle Scholar
Rees, L.V.C. & Sathy, C. (1993) Formation of zeolite from the system Na2O-Al2O3-SiO2-H2O in alkaline medium (pH>10). Zeolites, 13, 524533.CrossRefGoogle Scholar
Sanz, J. & Serratosa, J.M. (1984) 29Si and 27Al highresolution MAS NMR spectra of phyllosilicates. Journal of the American Chemical Society, 106, 47904793.CrossRefGoogle Scholar
Sanz, J., Madani, A. & Serratosa, J.M. (1988) Aluminium- 27 and Silicon-29 Magic Angle Spinning Nuclear Magnetic Resonance study of the kaolinite –mullite transformation. Journal of the American Ceramic Society, 71, 418 421.CrossRefGoogle Scholar
Todd, D.B. (2000) Improving incorporation of fillers in plastics. A special report. Advances in Polymer Technology, 19, 5459.3.0.CO;2-#>CrossRefGoogle Scholar
Yvon, J. (2000) Les kaolins d’El Mila, amélioration des qualités des kaolins. Report to ENOF. Laboratoire Environnement et Minéralurgie, INPL Nancy, France.Google Scholar