Skip to main content Accessibility help

Mutation breeding of Aspergillus niger strain LW-1 for high-yield β-mannanase production

  • Zhang Shu-Fei (a1), Song Jia-Huan (a1), Wu Min-Chen (a1), Sheng Jin-Ping (a1) and Li Jian-Fang (a1)...


A parent strain of Aspergillus niger LW-1 producing β-mannanase, preserved in our laboratory, was isolated. A strain, N-9, was screened out and further treated with vacuum microwave irradiation and ethyl methane sulphonate (EMS). A mutant strain, E-30, producing a high and stable yield of β-mannanase was obtained through screening by solid-state cultivation on the basic fermentation medium and several generations of bevel subculture. Its enzyme activity (36 675 U/g) was increased by 2.15 times compared to that of A. niger LW-1 (17 048 U/g). The production of high-yield β-mannanase by E-30 remained stable when maintained at 4°C for 2 months.


Corresponding author

*Corresponding author. E-mail:


Hide All
Banik, S, Bandyopadhyay, S and Ganguly, S (2003) Bioeffects of microwave – a brief review. Bioresource Technology 87: 155159.
Chai, PP, Jiang, ZQ, Li, LT and Ri Xia, BG (2005) Optimization of β-mannanase production by Bacillus subtilis WY45. Journal of China Agricultural University 10(3): 7780 (in Chinese with English abstract).
Chen, YG, Li, MG, Xu, LH, Liu, ZX, Xia, ZY and Wen, ML (2005) New model of physical mutagenic methods and its application status at microbion breeding. Journal of Yangtze University 2(5): 4648 (in Chinese with English abstract).
Clarke, JH, Davidson, K, Rixon, JE, et al. (2000) A comparison of enzyme-aided softwood paperpulp using combinations of xylanase, mannanase and alpha-galactosidase. Application of Microbiology and Biotechnology 53(6): 661667.
Hashimoto, Y and Fukumoto, J (1996) Studies on the enzyme treatment of coffee beans: purification of mannanase from Rhyzopus niveus and its action on coffee mannan. Nippon Nogeikagaku Kaishi 43: 317322.
Heck, JX, Soares, LHB and Ayub, MAZ (2005) Optimization of xylanase and mannanase production by Bacillus circulans strain BL53 on solid-state cultivation. Enzyme and Microbial Technology 37: 417423.
Jackson, ME, Geronian, K and Knox, A (2004) A dose–response study with the feed enzyme beta-mannanase in broilers provided with corn–soybean meal based diets in the absence of antibiotic. Poultry Science 83(12): 19921996.
Juhasz, T, Szengyel, Z, Reczey, K, Siika-Aho, M and Viikari, L (2005) Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochemistry 40: 35193525.
Khanongnuch, C, Asada, K, Tsuruga, H, Ooi, T, Kinoshita, S and Lumyong, S (1998) β-Mannanase and xylanase of Bacillus subtilis 5H active for bleaching of crude pulp. Journal of Fermentation Bioengineering 5: 461466.
Li, JF, Wang, BL and Wu, MC (2002) Fermentation process of acidic β-mannanase from Aspergillus niger. Food and Fermentation Industries 28(9): 1922 (in Chinese with English abstract).
Li, JH and Fang, J (2004) Breeding of hemicellulase overproducing strain and conditions for hemicellulase production. Journal of Wuxi Light Industry University 23(5): 4852 (in Chinese with English abstract).
Li, YQ (2001) Study on the screening of high yield xylanase producing strain Aspergillus niger by microwave mutagenesis. Journal of Microwaves 17(1): 4953 (in Chinese with English abstract).
Pettey, LA, Carter, SD, Senne, BW and Shriver, JA (2002) Effect of beta-mannanase addition to corn–soybean meal diets on growth performance, carcass traits, and nutrient digestibility of weanling growing–finishing pigs. Journal of Animal Science 80(4): 10121019.
Schomburg, D and Salzmann, M (1991) Enzyme Handbook. Berlin: Springer-Verlag, pp. 15.
Shazman, A, Mizrahi, S, Cogan, U and Shimoni, E (2007) Examining for possible non-thermal effects during heating in microwave oven. Journal of Food Chemistry 103: 444453.
Wu, XZ (1988) Industrial Production Technology of Enzymes. Gilin: Science and Technology Gilin Press, pp. 96103 (in Chinese).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed