Skip to main content Accessibility help

Establishment of regeneration system and transformation of Zm401 gene in Lilium longiflorum×L. formosanum

  • Li Qiu-Hua (a1), Hong Bo (a2), Tong Zheng (a1), Ma Chao (a1), Guan Ai-Nong (a1), Yu Jing-Juan (a3) and Gao Jun-Ping (a1)...


In vitro bulb scales of Lilium longiflorum×L. formosanum were used as explants to develop a highly efficient regeneration system. A high regeneration rate (100%) was reached through organogenesis on basal Murashige and Skoog (MS) medium supplemented with 1.0 mg/l 6-benzylaminopurine (6-BA) and 1.0 mg/l naphthaleneacetic acid (NAA). A genetic transformation system for the lily was developed using an Agrobacterium tumefaciens-mediated method. An improved genetic transformation rate (12‰) was obtained when the explants were pre-cultured for 3 days, immersed in bacterial suspension (OD600≈0.8) for 5 min, and co-cultivated for 5 days. The binary vector pBI121 containing Zm401, a maize pollen-specific gene, was introduced into the Agrobacterium strain LBA4404 and transformed into the explants using the genetic transformation system. Gene integration into the lily genome was confirmed by polymerase chain reaction (PCR) and PCR–Southern analysis. These results could lead to the production of new pollenless lily plants.


Corresponding author

*Corresponding author. E-mail:


Hide All

First published in Journal of Agricultural Biotechnology 2008, 16(1): 96–102



Hide All
Bytebier, B, Deboeck, F, Greve, H, de Montagu, M and van Hernalsteens, JP (1987) T-DNA organization in tumor cultures and transgenic plants of the monocotyledon Asparagus officinalis. Proceedings of National Academy of Sciences of the USA 84(15): 53455349.
Chan, MT, Chang, HH, Ho, SL, Tong, WF and Yu, SM (1993) Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α-amylase promoter/β-glucuronidase gene. Plant Molecular Biology 22: 491506.
Cheng, M, Fry, JE, Pang, S, et al. (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiology 115: 971980.
Cohen, A and Meredith, CP (1992) Agrobacterium-mediated transformation of Lilium. Acta Horticulturae 325: 611618.
Dai, XY, Yu, JJ, Zhao, Q, Zhu, DY and Ao, GM (2004) Non-coding RNA for ZM401, a pollen-specific gene of maize. Acta Botanica Sinica 46: 497504.
Delbreil, B, Guerche, P and Jullien, M (1993) Agrobacterium-mediated transformation of Asparagus officinalis L. long-term embryogenic callus and regeneration of transgenic plants. Plant Cell Reports 12(3): 129132.
Grassotti, A and Mercuri, A (1996) Lilium elegans: selection of pollenless clones. Acta Horticulturae 414: 125128.
Grimsley, N, Hohn, T, Davies, JW and Hohn, B (1987) Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325: 177179.
Hiei, Y, Ohta, S, Komari, T and Kumashiro, T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal 6: 271282.
Hong, B, Zhang, ChQ, Li, QH, Kasuga, M, Yamaguchi-Shinozaki, K and Gao, JP (2005) Agrobacterium-mediated transformation of groundcover chrysanthemum (Dendranthema grandiflorum cv. White Snow) with transcription factor DREB1A gene. Journal of Agricultural Biotechnology 13(3): 304309.
Hong, B, Tong, Z, Ma, N, et al. (2006a) Heterologous expression of the AtDREB1A gene in chrysanthemum increases drought and salt stress tolerance. Science in China 49(5): 436445.
Hong, B, Tong, Z, Ma, N, Kasuga, M, Yamaguchi-Shinozaki, K and Gao, JP (2006b) Expression of DREB1A gene in transgenic chrysanthemum enhances tolerance to low temperature. Journal of Horticultural Science and Biotechnology 81(6): 10021008.
Hong, B, Tong, Z, Li, QH, et al. (2006c) Regeneration and transformation through somatic embryogenesis, and determination of cold stress tolerance in ground cover chrysanthemum cv. Fall Color. Scientia Agricultura Sinica 39(7): 14431450.
Hoshi, Y, Kondo, M, Mori, S, Adachi, Y, Nakano, M and Kobayashi, H (2004) Production of transgenic lily plants by Agrobacterium-mediated transformation. Plant Cell Reports 22(6): 359364.
Hoshi, Y, Kondo, M and Kobayashi, H (2005) Agrobacterium-mediated transformation of Lilium longiflorum. Acta Horticulturae 673(2): 543547.
Langeveld, SA, Gerrits, MM, Derks, AFLM, Boonekamp, PM and Bol, JF (1995) Transformation of lily by Agrobacterium. Euphytica 85: 97100.
Li, ChX, Liu, JQ, Yu, JJ, Zhao, Q and Ao, GM (2001) Cloning and expression analysis of pollen-specific cDNA ZM401 from Zea mays. Journal of Agricultural Biotechnology 9(4): 374377.
Ma, JX, Zhao, Q, Yu, JJ and Ao, GM (2005) Ectopic expression of a maize pollen specific gene, ZM401, results in aberrant anther development in tobacco. Euphytica 144: 133140.
Mariani, C, Beuckeleer, M, de Truettner, J, Leemans, J and Goldberg, RB (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347(6295): 737741.
Mitsuda, N, Seki, M, Shinozaki, K and OhmeTakagi, M (2005) The NAC transcription factors NST1 and NST2 regulate secondary wall thickening and are required for anther dehiscence. Plant Cell Reports 17(11): 29933006.
Watad, AA, Yun, DJ, Matsumoto, T, et al. (1998) Microprojectile bombardment-mediated transformation of Lilium longiflorum. Plant Cell Reports 17: 262267.
Yamagishi, M (2003) A genetic model for a pollenless trait in Asiatic hybrid lily and its utilization for breeding. Scientia Horticulturae 98: 293297.


Related content

Powered by UNSILO

Establishment of regeneration system and transformation of Zm401 gene in Lilium longiflorum×L. formosanum

  • Li Qiu-Hua (a1), Hong Bo (a2), Tong Zheng (a1), Ma Chao (a1), Guan Ai-Nong (a1), Yu Jing-Juan (a3) and Gao Jun-Ping (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.