Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-vpjr5 Total loading time: 0.337 Render date: 2021-04-21T19:48:40.248Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Analysis of restriction sites and Southern blotting of two molecular markers linked to grape seedless gene

Published online by Cambridge University Press:  12 February 2007

Yang Ke-Qiang
Affiliation:
Key Laboratory of Ministry of Agriculture of Northwest Horticulture Plant Germplasm and Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling 712100, China College of Forestry, Shandong Agricultural University, Taian 271018, China
Wang Yue-Jin
Affiliation:
Key Laboratory of Ministry of Agriculture of Northwest Horticulture Plant Germplasm and Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling 712100, China
Zhang Jin-Jin
Affiliation:
Key Laboratory of Ministry of Agriculture of Northwest Horticulture Plant Germplasm and Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling 712100, China College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
Wang Xi-Ping
Affiliation:
Key Laboratory of Ministry of Agriculture of Northwest Horticulture Plant Germplasm and Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling 712100, China
Wan Yi-Zhen
Affiliation:
Key Laboratory of Ministry of Agriculture of Northwest Horticulture Plant Germplasm and Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling 712100, China
Zhang Jian-Xia
Affiliation:
Key Laboratory of Ministry of Agriculture of Northwest Horticulture Plant Germplasm and Genetic Improvement, College of Horticulture, Northwest A&F University, Yangling 712100, China
Corresponding
E-mail address:

Abstract

The cloning and sequencing of two specific molecular markers linked to grape (Vitis vinifera) seedless gene indicated that the full lengths of the markers, 39970524-5-564 (GenBank accession number: AY327513) and 39970524-6-1538 (GenBank accession number: AY327514), were 564 bp and 1538 bp, respectively. The restriction sites of sequences 39970524-5-564 and 39970524-6-1538 were analysed with Wingene231 software. The results indicated that there were 29 and 130 restriction sites in 39970524-5-564 and 39970524-6-1538, respectively, digested by restriction enzymes with recognition sites of six or more than six bases. There was no cleavage site in 39970524-5-564 and there was one site at 135 bp of 39970524-6-1538 when these two markers were digested by EcoRI. Both markers can not be digested by HindIII. Therefore, the full length of 39970524-5-564 and of the two bands of 39970524-6-1538 (1400 bp and 135 bp) could be cut out from the pGEMR-T Easy Vector by EcoRI. The labelled DNA of 39970524-5-564, used as a probe for Southern blotting with genomic DNA from Red Globe, Flame Seedless, Thompson Seedless, four seedless hybrids and three seeded hybrids, showed a unique hybrid band present in all seedless individuals, but absent in all seeded individuals. It was further indicated that the specific marker 39970524-5-564 was derived from the genome of seedless grapes.

Type
Research Article
Copyright
Copyright © China Agricultural University and Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below.

References

Clark, MS (1998) Plant Molecular Biotechnology–Experimental Manual (translated by Gu HY and Ju LJ). Beijing: High Education Press, pp. 1342 (in Chinese).Google Scholar
Lahogue, F, This, P and Bouquet, A (1998) Identification of a codominant SCAR marker linked to the seedlessness character in grapevine. Theoretical and Applied Genetics 97: 950959.CrossRefGoogle Scholar
Li, DB and Xu, P (1994) Method and theory of recombinant DNA. Hangzhou: Science and Technology Press, pp. 6983 (in Chinese).Google Scholar
Striem, MJ, Ben-Hayyim, G and Spiegel, RP (1996) Identifying molecular genetic markers associated with seedlessness in grape. Journal of the American Society of Horticultural Science 121: 758763.Google Scholar
Wang, YJ and Lamikanra, O (1997) Analysis of sequencing the RAPD marker linked to seedless gene in grape. Journal of Northwest Agricultural University 25(4): 15 (in Chinese with English abstract).Google Scholar
Wang, YJ and Lamikanra, O (2002) Application and synthesis on the DNA probe for detecting seedless genes in grape vine. Journal of Northwest Sci-tech University of Agricultural and Forestry (Natural Science Edition) 30(3): 4246 (in Chinese with English abstract).Google Scholar
Wang, YJ, Lamikanra, O, Lu, J and Ramming, DW (1996) Identification of genetic marker linked to seedless genes in grapes using RAPD. Journal of Northwest Agricultural University 24(5): 110 (in Chinese with English abstract).Google Scholar
Wang, YJ, Lamikanra, O and Schell, L (1997) Identification of hybrids derived from Vitis rotundifolia and V. vinifera by RAPD analysis. Journal of Northwest Agricultural University 25(3): 1620 (in Chinese with English abstract).Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 1 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 21st April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Analysis of restriction sites and Southern blotting of two molecular markers linked to grape seedless gene
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Analysis of restriction sites and Southern blotting of two molecular markers linked to grape seedless gene
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Analysis of restriction sites and Southern blotting of two molecular markers linked to grape seedless gene
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *