Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-20T14:34:53.695Z Has data issue: false hasContentIssue false

Recombinant angiotensin II therapy in a child with cardiac dysfunction and Pandoraea and Candida sepsis

Published online by Cambridge University Press:  22 May 2023

Michael E. Kim*
Affiliation:
Heart Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
Stuart L. Goldstein
Affiliation:
Department of Pediatrics, Division of Nephrology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
Meghan M. Chlebowski
Affiliation:
Heart Institute, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
*
Corresponding author: M. E. Kim, E-mail: michael.kim@cchmc.org

Abstract

Recombinant angiotensin II is an emerging drug therapy for refractory hypotension. Its use is relevant to patients with disruption of the renin–angiotensin–aldosterone system denoted by elevated direct renin levels. We present a child that responded to recombinant angiotensin II in the setting of right ventricular hypertension and multi-organism septic shock.

Type
Brief Report
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bellomo, R, Forni, LG, Busse, LW, et al. Renin and survival in patients given angiotensin II for catecholamine-resistant vasodilatory shock. Am J Respir Crit Care Med 2020; 202: 12531261.10.1164/rccm.201911-2172OCCrossRefGoogle ScholarPubMed
Nguyen, M, Denimal, D, Dargent, A, et al. Plasma renin concentration is associated with hemodynamic deficiency. Shock 2019; 52: e22e30.10.1097/SHK.0000000000001285CrossRefGoogle ScholarPubMed
Rhodes, A, Evans, LE, Alhazzani, W, et al. Surviving sepsis campaign: international guidelines for management. Intensive Care Med 2017; 43: 304377.10.1007/s00134-017-4683-6CrossRefGoogle ScholarPubMed
Busse, LW, McCurdy, MT, Ali, O, Hall, A, Chen, H, Ostermann, M. The effect of angiotensin II on blood pressure in patients with circulatory shock. Crit Care 2017; 21: 324.10.1186/s13054-017-1896-6CrossRefGoogle ScholarPubMed
Khanna, A, English, SW, Wang, XS, et al. Angiotensin II for the treatment of vasodilatory shock. N Engl J Med 2017; 377: 419430.10.1056/NEJMoa1704154CrossRefGoogle ScholarPubMed
Klijian, A, Khanna, AK, Reddy, VS, et al. Treatment with angiotensin II is associated with rapid blood pressure response. J Cardiothorac Vasc Anesth 2021; 35: 5158.10.1053/j.jvca.2020.08.001CrossRefGoogle ScholarPubMed
Chawla, LS, Busse, L, Brasha-Mitchell, E, et al. Intravenous angiotensin II for the treatment of high-output shock. Crit Care 2014; 18: 534.10.1186/s13054-014-0534-9CrossRefGoogle ScholarPubMed
Kozik, DJ, Tweddell, JS. Characterizing the inflammatory response to cardiopulmonary bypass in children. Ann Thorac Surg 2006; 81: S234754.10.1016/j.athoracsur.2006.02.073CrossRefGoogle ScholarPubMed
Degand, N, Lotte, R, Decondé Le Butor, Célia, et al. Epidemic spread of Pandoraea pulmonicola in a cystic fibrosis center. BMC Infect Dis 2015; 15: 583.10.1186/s12879-015-1327-8CrossRefGoogle Scholar
Weis, F, Kilger, E, Beiras-Fernandez, A, et al. Association between vasopressor dependence and early outcome in patients after cardiac surgery. Anaesthesia 2006; 61: 938942.10.1111/j.1365-2044.2006.04779.xCrossRefGoogle ScholarPubMed