Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T23:57:19.432Z Has data issue: false hasContentIssue false

Prevalence and clinical significance of late gadolinium enhancement in children and adolescents with hypertrophic cardiomyopathy: a systematic review and meta-analysis

Published online by Cambridge University Press:  04 March 2024

Leong Tung Ong*
Affiliation:
Faculty of Medicine, University of Malaya, Kuala Lumpur, WP, Malaysia
Si Wei David Fan
Affiliation:
Faculty of Medicine, University of Malaya, Kuala Lumpur, WP, Malaysia
*
Corresponding author: L. T. Ong; Email: leotungong@gmail.com

Abstract

Objectives:

Hypertrophic cardiomyopathy is the leading cause of sudden cardiac death among the paediatric population. The aim of this study is to investigate the prevalence and clinical significance of late gadolinium enhancement, as assessed by cardiac MRI, in paediatric hypertrophic cardiomyopathy.

Methods:

A systematic literature search was conducted in PubMed, SCOPUS, and Ovid SP to identify relevant studies. Pooled estimates with a 95% confidence interval were calculated using the random-effects generic inverse variance model. Statistical analysis was performed using Review Manager v5.4 and R programming.

Results:

Seventeen studies were included in this meta-analysis, encompassing a total of 778 patients. Late gadolinium enhancement was highly prevalent in paediatric hypertrophic cardiomyopathy, with a pooled prevalence of 51% (95% confidence interval, 40–62%). The estimated extent of focal fibrosis expressed as a percentage of left ventricular mass was 4.70% (95% confidence interval, 2.11–7.30%). The presence of late gadolinium enhancement was associated with an increased risk of adverse cardiac events (pooled odds ratio 3.49, 95% confidence interval 1.10–11.09). The left ventricular mass index of late gadolinium enhancement-positive group was higher than the negative group, with a standardised mean difference of 0.91 (95% confidence interval, 0.42–1.41).

Conclusion:

This meta-analysis demonstrates that prevalence of late gadolinium enhancement in paediatric hypertrophic cardiomyopathy is similar to that in the adult population. The presence and extent of late gadolinium enhancement are independent predictors of adverse cardiac events, underscoring their prognostic significance among the paediatric population.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Elliott, PM, Anastasakis, A, Borger, MA, et al. ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European society of cardiology (ESC). Eur Heart J 2014; 14: 27332779. DOI: 10.1093/eurheartj/ehu284.Google Scholar
Ali, LA, Marrone, C, Martins, DS, et al. Prognostic factors in hypertrophic cardiomyopathy in children: an MRI based study. Int J Cardiol 2022; 364: 141147. DOI: 10.1016/j.ijcard.2022.06.043.CrossRefGoogle ScholarPubMed
Thakkar, K, Karajgi, AR, Kallamvalappil, AM, et al. Sudden cardiac death in childhood hypertrophic cardiomyopathy. Dis Mon 2023; 69: 101548. DOI: 10.1016/j.disamonth.2023.101548.CrossRefGoogle ScholarPubMed
Varnava, AM, Elliott, PM, Sharma, S, McKenna, WJ, Davies, MJ. Hypertrophic cardiomyopathy: the interrelation of disarray, fibrosis, and small vessel disease. Heart 2000; 84: 476482. DOI: 10.1136/heart.84.5.476.CrossRefGoogle ScholarPubMed
Ismail, TF, Hsu, LY, Greve, AM, et al. Coronary microvascular ischemia in hypertrophic cardiomyopathy - a pixel-wise quantitative cardiovascular magnetic resonance perfusion study. J Cardiovasc Magn Reson 2014; 16: 49. DOI: 10.1186/s12968-014-0049-1.CrossRefGoogle ScholarPubMed
Almaas, VM, Haugaa, KH, Strøm, EH, et al. Noninvasive assessment of myocardial fibrosis in patients with obstructive hypertrophic cardiomyopathy. Heart 2014; 100: 631638. DOI: 10.1136/heartjnl-2013-304923.CrossRefGoogle ScholarPubMed
Puntmann, VO, Yap, YG, McKenna, W, Camm, AJ. Significance of maximal and regional left ventricular wall thickness in association with arrhythmic events in patients with hypertrophic cardiomyopathy. Circ J 2010; 74: 531537. DOI: 10.1253/circj.cj-09-0723.CrossRefGoogle ScholarPubMed
Rubinshtein, R, Glockner, JF, Ommen, SR, et al. Characteristics and clinical significance of late gadolinium enhancement by contrast-enhanced magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Circ Heart Fail 2010; 3: 5158. DOI: 10.1161/circheartfailure.109.854026.CrossRefGoogle ScholarPubMed
Green, JJ, Berger, JS, Kramer, CM, Salerno, M. Prognostic value of late gadolinium enhancement in clinical outcomes for hypertrophic cardiomyopathy. JACC Cardiovasc Imaging 2012; 5: 370377. DOI: 10.1016/j.jcmg.2011.11.021.CrossRefGoogle ScholarPubMed
Ellims, AH, Iles, LM, Ling, LH, Hare, JL, Kaye, DM, Taylor, AJ. Diffuse myocardial fibrosis in hypertrophic cardiomyopathy can be identified by cardiovascular magnetic resonance, and is associated with left ventricular diastolic dysfunction. J Cardiovasc Magn Reson 2012; 14: 76. DOI: 10.1186/1532-429x-14-76.CrossRefGoogle ScholarPubMed
Moon, JC, Reed, E, Sheppard, MN, et al. The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol 2004; 16: 22602264. DOI: 10.1016/j.jacc.2004.03.035.CrossRefGoogle Scholar
Todiere, G, Aquaro, GD, Piaggi, P, et al. Progression of myocardial fibrosis assessed with cardiac magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol 2012; 60: 922929. DOI: 10.1016/j.jacc.2012.03.076.CrossRefGoogle ScholarPubMed
Axelsson Raja, A, Farhad, H, Valente, AM, et al. Prevalence and progression of late gadolinium enhancement in children and adolescents with hypertrophic cardiomyopathy. Circulation 2018; 138: 782792. DOI: 10.1161/circulationaha.117.032966.CrossRefGoogle ScholarPubMed
O’Hanlon, R, Grasso, A, Roughton, M, et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol 2010; 56: 867874. DOI: 10.1016/j.jacc.2010.05.010.CrossRefGoogle ScholarPubMed
Moak, JP, Kaski, JP. Hypertrophic cardiomyopathy in children. Heart 2012; 98: 10441054. DOI: 10.1136/heartjnl-2011-300531.CrossRefGoogle ScholarPubMed
Chaowu, Y, Shihua, Z, Jian, L, Li, L, Wei, F. Cardiovascular magnetic resonance characteristics in children with hypertrophic cardiomyopathy. Circ Heart Fail 2013; 6: 10131020. DOI: 10.1161/circheartfailure.113.000414.CrossRefGoogle ScholarPubMed
Wells, GA, Shea, B, O’Connell, D, et al. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. [cited 6 October 2023]. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.Google Scholar
DerSimonian, R, Laird, N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177188. DOI: 10.1016/0197-2456(86)90046-2.CrossRefGoogle ScholarPubMed
Higgins, JP, Altman, DG, Gøtzsche, PC, et al. The cochrane collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011; 343: d5928d5928. DOI: 10.1136/bmj.d5928.CrossRefGoogle ScholarPubMed
Sterne, J, Egger, M. Regression Methods to Detect Publication and Other Bias in Meta-Analysis. Publication Bias in Meta-Analysis: Prevention, Assessment and Adjustments. Wiley. 2006, 99110. DOI: 10.1002/0470870168.ch6.Google Scholar
Review Manager (RevMan) [Computer program]. The Cochrane Collaboration. 2020.Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2020.Google Scholar
Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J Stat Softw 2010; 36: 148. DOI: 10.18637/jss.v036.i03.CrossRefGoogle Scholar
Moher, D, Liberati, A, Tetzlaff, J, Altman, DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 2009; 339: b2535. DOI: 10.1136/bmj.b2535.CrossRefGoogle ScholarPubMed
Smith, BM, Dorfman, AL, Yu, S, et al. Clinical significance of late gadolinium enhancement in patients<20 years of age with hypertrophic cardiomyopathy. Am J Cardiol 2014; 113: 12341239. DOI: 10.1016/j.amjcard.2013.12.034.CrossRefGoogle ScholarPubMed
Windram, JD, Benson, LN, Dragelescu, A, et al. Distribution of hypertrophy and late gadolinium enhancement in children and adolescents with hypertrophic cardiomyopathy. Congenit Heart Dis 2015; 10: E258E267. DOI: 10.1111/chd.12286.CrossRefGoogle ScholarPubMed
Hussain, T, Dragulescu, A, Benson, L, et al. Quantification and significance of diffuse myocardial fibrosis and diastolic dysfunction in childhood hypertrophic cardiomyopathy. Pediatr Cardiol 2015; 36: 970978. DOI: 10.1007/s00246-015-1107-7.CrossRefGoogle ScholarPubMed
Spinner, JA, Noel, CV, Denfield, SW, et al. Association of late gadolinium enhancement and degree of left ventricular hypertrophy assessed on cardiac magnetic resonance imaging with ventricular tachycardia in children with hypertrophic cardiomyopathy. Am J Cardiol 2016; 15: 13421348. DOI: 10.1016/j.amjcard.2016.01.032.CrossRefGoogle Scholar
Bogarapu, S, Puchalski, MD, Everitt, MD, Williams, RV, Weng, HY, Menon, SC. Novel cardiac magnetic resonance feature tracking (CMR-FT) analysis for detection of myocardial fibrosis in pediatric hypertrophic cardiomyopathy. Pediatr Cardiol 2016; 37: 663673. DOI: 10.1007/s00246-015-1329-8.CrossRefGoogle ScholarPubMed
Compton, G, Nield, L, Dragulescu, A, Benson, L, Grosse-Wortmann, L. Echocardiography as a screening test for myocardial scarring in children with hypertrophic cardiomyopathy. Int J Pediatr 2016; 2016: 1980636–6. DOI: 10.1155/2016/1980636.CrossRefGoogle ScholarPubMed
Hernandez, LE. Myocardial stress perfusion magnetic resonance in children with hypertrophic cardiomyopathy. Cardiol Young 2018; 28: 702708. DOI: 10.1017/s1047951118000094.CrossRefGoogle ScholarPubMed
Sunthankar, S, Parra, DA, George-Durrett, K, et al. Tissue characterisation and myocardial mechanics using cardiac MRI in children with hypertrophic cardiomyopathy. Cardiol Young 2019; 29: 14591467. DOI: 10.1017/s1047951119002397.CrossRefGoogle ScholarPubMed
Elfadl, HGMFA, El Mogy, SAEDM, Abouelkeir, MMA, Gaballah, GM, Eid, NKE-D. Delayed myocardial enhancement in children with different types of cardiomyopathy: a diagnostic and prognostic tool. Egypt J Radiol Nucl Med 2019; 50: 46. DOI: 10.1186/s43055-019-0035-6.CrossRefGoogle Scholar
Bonura, ED, Bos, JM, Abdelsalam, MA, et al. Cardiac magnetic resonance imaging features in hypertrophic cardiomyopathy diagnosed at < 21 years of age. Am J Cardiol 2020; 15: 12491255. DOI: 10.1016/j.amjcard.2020.01.027.CrossRefGoogle Scholar
Alis, D, Asmakutlu, O, Topel, C, Karaarslan, E. Diagnostic value of left atrial strain in pediatric hypertrophic cardiomyopathy with normal maximum left atrial volume index: preliminary cardiac magnetic resonance study. Pediatr Radiol 2021; 51: 594604. DOI: 10.1007/s00247-020-04884-x.CrossRefGoogle ScholarPubMed
Österberg, AW, Östman-Smith, I, Jablonowski, R, et al. High ECG risk-scores predict late gadolinium enhancement on magnetic resonance imaging in HCM in the young. Pediatr Cardiol 2021; 42: 492500. DOI: 10.1007/s00246-020-02506-9.CrossRefGoogle ScholarPubMed
Petryka-Mazurkiewicz, J, Ziolkowska, L, Mazurkiewicz, Ł., et al. Right-ventricular mechanics assessed by cardiovascular magnetic resonance feature tracking in children with hypertrophic cardiomyopathy. PLoS One 2021; 16: e0248725. DOI: 10.1371/journal.pone.0248725.CrossRefGoogle ScholarPubMed
Kirmani, S, Woodard, PK, Shi, L, et al. Cardiac imaging and biomarkers for assessing myocardial fibrosis in children with hypertrophic cardiomyopathy. Am Heart J 2023; 264: 153162. DOI: 10.1016/j.ahj.2023.06.005.CrossRefGoogle ScholarPubMed
Mukhtar, G, Sasidharan, B, Krishnamoorthy, KM, et al. Clinical profile and outcomes of pediatric hypertrophic cardiomyopathy in a south Indian tertiary care cardiac center: a three decade experience. BMC Pediatr 2023; 23: 446. DOI: 10.1186/s12887-023-04255-z.CrossRefGoogle Scholar
Gebker, R, Neuss, M, Paetsch, I, Nagel, E. Progressive myocardial fibrosis in a patient with apical hypertrophic cardiomyopathy detected by cardiovascular magnetic resonance. Circulation 2006; 114: e75e76. DOI: 10.1161/CIRCULATIONAHA.106.612994.CrossRefGoogle Scholar
Choi, HM, Kim, KH, Lee, JM, et al. Myocardial fibrosis progression on cardiac magnetic resonance in hypertrophic cardiomyopathy. Heart 2015; 101: 870876. DOI: 10.1136/heartjnl-2014-306555.CrossRefGoogle ScholarPubMed
Kwon, DH, Smedira, NG, Rodriguez, ER, et al. Cardiac magnetic resonance detection of myocardial scarring in hypertrophic cardiomyopathy: correlation with histopathology and prevalence of ventricular tachycardia. J Am Coll Cardiol 2009; 54: 242249. DOI: 10.1016/j.jacc.2009.04.026.CrossRefGoogle ScholarPubMed
Kitamura, M, Shimizu, M, Ino, H, et al. Collagen remodeling and cardiac dysfunction in patients with hypertrophic cardiomyopathy: the significance of type III and VI collagens. Clin Cardiol 2001; 24: 325329. DOI: 10.1002/clc.4960240413.CrossRefGoogle ScholarPubMed
Rickers, C, Wilke, NM, Jerosch-Herold, M, et al. Utility of cardiac magnetic resonance imaging in the diagnosis of hypertrophic cardiomyopathy. Circulation 2005; 112: 855861. DOI: 10.1161/circulationaha.104.507723.CrossRefGoogle ScholarPubMed
Moon, JC, Fisher, NG, McKenna, WJ, Pennell, DJ. Detection of apical hypertrophic cardiomyopathy by cardiovascular magnetic resonance in patients with non-diagnostic echocardiography. Heart 2004; 90: 645649. DOI: 10.1136/hrt.2003.014969.CrossRefGoogle ScholarPubMed
Popović, ZB, Kwon, DH, Mishra, M, et al. Association between regional ventricular function and myocardial fibrosis in hypertrophic cardiomyopathy assessed by speckle tracking echocardiography and delayed hyperenhancement magnetic resonance imaging. J Am Soc Echocardiogr 2008; 21: 12991305. DOI: 10.1016/j.echo.2008.09.011.CrossRefGoogle ScholarPubMed
Choudhury, L, Mahrholdt, H, Wagner, A, et al. Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 2002; 40: 21562164. DOI: 10.1016/s0735-1097(02)02602-5.CrossRefGoogle ScholarPubMed
Nazarian, S, Bluemke, DA, Lardo, AC, et al. Magnetic resonance assessment of the substrate for inducible ventricular tachycardia in nonischemic cardiomyopathy. Circulation 2005; 112: 28212825. DOI: 10.1161/circulationaha.105.549659.CrossRefGoogle ScholarPubMed
Maron, MS, Finley, JJ, Bos, JM, et al. Prevalence, clinical significance, and natural history of left ventricular apical aneurysms in hypertrophic cardiomyopathy. Circulation 2008; 118: 15411549. DOI: 10.1161/circulationaha.108.781401.CrossRefGoogle ScholarPubMed
Matsubara, K, Nakamura, T, Kuribayashi, T, Azuma, A, Nakagawa, M. Sustained cavity obliteration and apical aneurysm formation in apical hypertrophic cardiomyopathy. J Am Coll Cardiol 2003; 42: 288295. DOI: 10.1016/s0735-1097(03)00576-x.CrossRefGoogle ScholarPubMed
Harris, KM, Spirito, P, Maron, MS, et al. Prevalence, clinical profile, and significance of left ventricular remodeling in the end-stage phase of hypertrophic cardiomyopathy. Circulation 2006; 114: 216225. DOI: 10.1161/circulationaha.105.583500.CrossRefGoogle ScholarPubMed
Kamp, NJ, Chery, G, Kosinski, AS, et al. Risk stratification using late gadolinium enhancement on cardiac magnetic resonance imaging in patients with hypertrophic cardiomyopathy: a systematic review and meta-analysis. Prog Cardiovasc Dis 2021; 66: 1016. DOI: 10.1016/j.pcad.2020.11.001.CrossRefGoogle ScholarPubMed
Maron, BJ, Spirito, P, Ackerman, MJ, et al. Prevention of sudden cardiac death with implantable cardioverter-defibrillators in children and adolescents with hypertrophic cardiomyopathy. J Am Coll Cardiol 2013; 9: 15271535. DOI: 10.1016/j.jacc.2013.01.037.CrossRefGoogle Scholar
Kamp, AN, Von Bergen, NH, Henrikson, CA, et al. Implanted defibrillators in young hypertrophic cardiomyopathy patients: a multicenter study. Pediatr Cardiol 2013; 34: 16201627. DOI: 10.1007/s00246-013-0676-6.CrossRefGoogle ScholarPubMed
Kato, TS, Noda, A, Izawa, H, et al. Discrimination of nonobstructive hypertrophic cardiomyopathy from hypertensive left ventricular hypertrophy on the basis of strain rate imaging by tissue Doppler ultrasonography. Circulation 2004; 110: 38083814. DOI: 10.1161/01.Cir.0000150334.69355.00.CrossRefGoogle ScholarPubMed
Serri, K, Reant, P, Lafitte, M, et al. Global and regional myocardial function quantification by two-dimensional strain: application in hypertrophic cardiomyopathy. J Am Coll Cardiol 2006; 21: 11751181. DOI: 10.1016/j.jacc.2005.10.061.CrossRefGoogle Scholar
Nagakura, T, Takeuchi, M, Yoshitani, H, et al. Hypertrophic cardiomyopathy is associated with more severe left ventricular dyssynchrony than is hypertensive left ventricular hypertrophy. Echocardiography 2007; 24: 677684. DOI: 10.1111/j.1540-8175.2007.00458.x.CrossRefGoogle ScholarPubMed
Hussain, T, Dragulescu, A, Benson, L, et al. Diffuse myocardial fibrosis in pediatric hypertrophic cardiomyopathy. J Cardiov Magn Reson 2013; 15: O72. DOI: 10.1186/1532-429X-15-S1-O72.CrossRefGoogle Scholar
Kowallick, JT, Silva Vieira, M, Kutty, S, et al. Left atrial performance in the course of hypertrophic cardiomyopathy: relation to left ventricular hypertrophy and fibrosis. Invest Radiol 2017; 52: 177185. DOI: 10.1097/rli.0000000000000326.CrossRefGoogle ScholarPubMed
Lang, RM, Bierig, M, Devereux, RB, et al. Recommendations for chamber quantification: a report from the American society of echocardiography’s guidelines and standards committee and the chamber quantification writing group, developed in conjunction with the european association of echocardiography, a branch of the european society of cardiology. J Am Soc Echocardiogr 2005; 18: 14401463. DOI: 10.1016/j.echo.2005.10.005.CrossRefGoogle Scholar
Laukkanen, JA, Khan, H, Kurl, S, et al. Left ventricular mass and the risk of sudden cardiac death: a population-based study. J Am Heart Assoc 2014; 3: e001285. DOI: 10.1161/JAHA.114.001285.CrossRefGoogle ScholarPubMed