Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T10:03:13.767Z Has data issue: false hasContentIssue false

Practical application of natriuretic peptides in paediatric cardiology

Published online by Cambridge University Press:  11 May 2010

Julie Smith
Affiliation:
Department of Pathology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
Jens P. Goetze
Affiliation:
Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
Claus B. Andersen
Affiliation:
Department of Pathology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
Niels Vejlstrup*
Affiliation:
Department of Paediatric Cardiology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
*
Correspondence to: Dr N. Vejlstrup, MD, PhD, Department of Paediatric Cardiology (2011), Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark. Tel: +45 3545 0924; Fax: +45 3545 2705; E-mail: niels.vejlstrup@rh.regionh.dk

Abstract

It is still uncertain if cardiac natriuretic peptides are useful biomarkers in paediatric cardiology. In this review we identify four clinical scenarios in paediatric cardiology, where clinical decision-making can be difficult, and where we feel the paediatric cardiologists need additional diagnostic tools. Natriuretic peptide measurements could be that extra tool. We discuss and suggest N-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide reference intervals for children without cardiovascular disease and cut-off points for the four specific paediatric heart conditions. We conclude that in premature neonates with persistent arterial ducts; in teenagers with tetralogy of Fallot and pulmonary regurgitation; and in children with heart transplants and potential allograft rejection cardiac peptides can provide the clinician with additional information, but in children with atrial septal defects the peptides are not helpful in guiding treatment or follow-up.

Type
Reviews
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Suda, K, Matsumura, M, Matsumoto, M. Clinical implication of plasma natriuretic peptides in children with ventricular septal defect. Pediatr Int 2003; 45: 249254.CrossRefGoogle ScholarPubMed
2. de Bold, AJ, Borenstein, HB, Veress, AT, Sonnenberg, H. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Reprinted from Life Sci. 28: 89–94, 1981. J Am Soc Nephrol 2001; 12: 403409.Google Scholar
3. Kangawa, K, Matsuo, H. Purification and complete amino acid sequence of alpha-human atrial natriuretic polypeptide (alpha-hANP). Biochem Biophys Res Commun 1984; 118: 131139.CrossRefGoogle ScholarPubMed
4. Sudoh, T, Maekawa, K, Kojima, M, et al. Cloning and sequence analysis of cDNA encoding a precursor for human brain natriuretic peptide. Biochem Biophys Res Commun 1989; 159: 14271434.CrossRefGoogle ScholarPubMed
5. Ogawa, Y, Itoh, H, Yoshitake, Y, et al. Molecular cloning and chromosomal assignment of the mouse C-type natriuretic peptide (CNP) gene (Nppc): comparison with the human CNP gene (NPPC). Genomics 1994; 24: 383387.CrossRefGoogle ScholarPubMed
6. Tamura, N, Ogawa, Y, Yasoda, A, et al. Two cardiac natriuretic peptide genes (atrial natriuretic peptide and brain natriuretic peptide) are organized in tandem in the mouse and human genomes. J Mol Cell Cardiol 1996; 28: 18111815.CrossRefGoogle ScholarPubMed
7. Nielsen, SJ, Gotze, JP, Jensen, HL, Rehfeld, JF. ProCNP and CNP are expressed primarily in male genital organs. Regul Pept 2008; 146: 204212.CrossRefGoogle ScholarPubMed
8. Tsuchimochi, H, Kurimoto, F, Ieki, K, et al. Atrial natriuretic peptide distribution in fetal and failed adult human hearts. Circulation 1988; 78: 920927.CrossRefGoogle ScholarPubMed
9. Takahashi, T, Allen, PD, Izumo, S. Expression of A-, B-, and C-type natriuretic peptide genes in failing and developing human ventricles. Correlation with expression of the Ca(2+)-ATPase gene. Circ Res 1992; 71: 917.CrossRefGoogle Scholar
10. Cameron, VA, Aitken, GD, Ellmers, LJ, Kennedy, MA, Espiner, EA. The sites of gene expression of atrial, brain, and C-type natriuretic peptides in mouse fetal development: temporal changes in embryos and placenta. Endocrinology 1996; 137: 817824.CrossRefGoogle ScholarPubMed
11. Mantymaa, P, Vuolteenaho, O, Marttila, M, Ruskoaho, H. Atrial stretch induces rapid increase in brain natriuretic peptide but not in atrial natriuretic peptide gene expression in vitro. Endocrinology 1993; 133: 14701473.CrossRefGoogle Scholar
12. Kinnunen, P, Vuolteenaho, O, Uusimaa, P, Ruskoaho, H. Passive mechanical stretch releases atrial natriuretic peptide from rat ventricular myocardium. Circ Res 1992; 70: 12441253.CrossRefGoogle ScholarPubMed
13. Liang, F, Wu, J, Garami, M, Gardner, DG. Mechanical strain increases expression of the brain natriuretic peptide gene in rat cardiac myocytes. J Biol Chem 1997; 272: 2805028056.CrossRefGoogle ScholarPubMed
14. Hosoda, K, Nakao, K, Mukoyama, M, et al. Expression of brain natriuretic peptide gene in human heart. Production in the ventricle. Hypertension 1991; 17: 11521155.CrossRefGoogle ScholarPubMed
15. Nakao, K, Mukoyama, M, Hosoda, K, et al. Biosynthesis, secretion, and receptor selectivity of human brain natriuretic peptide. Can J Physiol Pharmacol 1991; 69: 15001506.CrossRefGoogle ScholarPubMed
16. Mukoyama, M, Nakao, K, Hosoda, K, et al. Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J Clin Invest 1991; 87: 14021412.CrossRefGoogle ScholarPubMed
17. Tulevski, II, Groenink, M, van Der Wall, EE, et al. Increased brain and atrial natriuretic peptides in patients with chronic right ventricular pressure overload: correlation between plasma neurohormones and right ventricular dysfunction. Heart 2001; 86: 2730.Google ScholarPubMed
18. Weidemann, A, Klanke, B, Wagner, M, et al. Hypoxia, via stabilization of the hypoxia-inducible factor HIF-1alpha, is a direct and sufficient stimulus for brain-type natriuretic peptide induction. Biochem J 2008; 409: 233242.CrossRefGoogle ScholarPubMed
19. Khan, AR, Birbach, M, Cohen, MS, et al. Chronic hypoxemia increases ventricular brain natriuretic peptide precursors in neonatal swine. Ann Thorac Surg 2008; 85: 618623.CrossRefGoogle ScholarPubMed
20. Goetze, JP, Gore, A, Moller, CH, et al. Acute myocardial hypoxia increases BNP gene expression. FASEB J 2004; 18: 19281930.CrossRefGoogle ScholarPubMed
21. Rankin, AJ, Courneya, CA, Wilson, N, Ledsome, JR. Tachycardia releases atrial natriuretic peptide in the anesthetized rabbit. Life Sci 1986; 38: 19511957.CrossRefGoogle ScholarPubMed
22. Tsuruda, T, Boerrigter, G, Huntley, BK, et al. Brain natriuretic peptide is produced in cardiac fibroblasts and induces matrix metalloproteinases. Circ Res 2002; 91: 11271134.CrossRefGoogle ScholarPubMed
23. Walther, T, Klostermann, K, Heringer-Walther, S, et al. Fibrosis rather than blood pressure determines cardiac BNP expression in mice. Regul Pept 2003; 116: 95100.CrossRefGoogle ScholarPubMed
24. Mehra, MR, Uber, PA, Park, MH, et al. Obesity and suppressed B-type natriuretic peptide levels in heart failure. J Am Coll Cardiol 2004; 43: 15901595.CrossRefGoogle ScholarPubMed
25. Jensen, KT, Carstens, J, Ivarsen, P, Pedersen, EB. A new, fast and reliable radioimmunoassay of brain natriuretic peptide in human plasma. Reference values in healthy subjects and in patients with different diseases. Scand J Clin Lab Invest 1997; 57: 529540.CrossRefGoogle ScholarPubMed
26. Piuhola, J, Szokodi, I, Ruskoaho, H. Endothelin-1 and angiotensin II contribute to BNP but not c-fos gene expression response to elevated load in isolated mice hearts. Biochim Biophys Acta 2007; 1772: 338344.CrossRefGoogle Scholar
27. Wiese, S, Breyer, T, Dragu, A, et al. Gene expression of brain natriuretic peptide in isolated atrial and ventricular human myocardium: influence of angiotensin II and diastolic fiber length. Circulation 2000; 102: 30743079.CrossRefGoogle ScholarPubMed
28. Emdin, M, Passino, C, Prontera, C, et al. Cardiac natriuretic hormones, neuro-hormones, thyroid hormones and cytokines in normal subjects and patients with heart failure. Clin Chem Lab Med 2004; 42: 627636.CrossRefGoogle Scholar
29. Holmes, SJ, Espiner, EA, Richards, AM, Yandle, TG, Frampton, C. Renal, endocrine, and hemodynamic effects of human brain natriuretic peptide in normal man. J Clin Endocrinol Metab 1993; 76: 9196.Google ScholarPubMed
30. Misono, KS, Grammer, RT, Fukumi, H, Inagami, T. Rat atrial natriuretic factor: isolation, structure and biological activities of four major peptides. Biochem Biophys Res Commun 1984; 123: 444451.CrossRefGoogle ScholarPubMed
31. Clerico, A, Iervasi, G, Del Chicca, MG, et al. Circulating levels of cardiac natriuretic peptides (ANP and BNP) measured by highly sensitive and specific immunoradiometric assays in normal subjects and in patients with different degrees of heart failure. J Endocrinol Invest 1998; 21: 170179.CrossRefGoogle ScholarPubMed
32. Buckley, MG, Sagnella, GA, Markandu, ND, Singer, DR, MacGregor, GA. Immunoreactive N-terminal pro-atrial natriuretic peptide in human plasma: plasma levels and comparisons with alpha-human atrial natriuretic peptide in normal subjects, patients with essential hypertension, cardiac transplant and chronic renal failure. Clin Sci (Lond) 1989; 77: 573579.CrossRefGoogle ScholarPubMed
33. Buckley, MG, Sethi, D, Markandu, ND, et al. Plasma concentrations and comparisons of brain natriuretic peptide and atrial natriuretic peptide in normal subjects, cardiac transplant recipients and patients with dialysis-independent or dialysis-dependent chronic renal failure. Clin Sci (Lond) 1992; 83: 437444.CrossRefGoogle ScholarPubMed
34. Nagaya, N, Nishikimi, T, Okano, Y, et al. Plasma brain natriuretic peptide levels increase in proportion to the extent of right ventricular dysfunction in pulmonary hypertension. J Am Coll Cardiol 1998; 31: 202208.CrossRefGoogle Scholar
35. Goetze, JP, Dahlstrom, U, Rehfeld, JF, Alehagen, U. Impact of epitope specificity and precursor maturation in pro-B-type natriuretic peptide measurement. Clin Chem 2008; 54: 17801787.CrossRefGoogle ScholarPubMed
36. Heublein, DM, Huntley, BK, Boerrigter, G, et al. Immunoreactivity and guanosine 3’,5’-cyclic monophosphate activating actions of various molecular forms of human B-type natriuretic peptide. Hypertension 2007; 49: 11141119.CrossRefGoogle Scholar
37. Lam, CS, Burnett, JC Jr, Costello-Boerrigter, L, Rodeheffer, RJ, Redfield, MM. Alternate circulating pro-B-type natriuretic peptide and B-type natriuretic peptide forms in the general population. J Am Coll Cardiol 2007; 49: 11931202.CrossRefGoogle ScholarPubMed
38. Hawkridge, AM, Heublein, DM, IIIBergen, HR, et al. Quantitative mass spectral evidence for the absence of circulating brain natriuretic peptide (BNP-32) in severe human heart failure. Proc Natl Acad Sci U S A 2005; 102: 1744217447.CrossRefGoogle ScholarPubMed
39. Seferian, KR, Tamm, NN, Semenov, AG, et al. The brain natriuretic peptide (BNP) precursor is the major immunoreactive form of BNP in patients with heart failure. Clin Chem 2007; 53: 866873.CrossRefGoogle ScholarPubMed
40. Seferian, KR, Tamm, NN, Semenov, AG, et al. Immunodetection of glycosylated NT-proBNP circulating in human blood. Clin Chem 2008; 54: 866873.CrossRefGoogle ScholarPubMed
41. Hammerer-Lercher, A, Puschendorf, B, Sommer, R, et al. Natriuretic peptides correlate between newborn twins but not between twins and their mothers. Clin Chim Acta 2007; 377: 279280.CrossRefGoogle Scholar
42. Hammerer-Lercher, A, Mair, J, Tews, G, Puschendorf, B, Sommer, R. N-terminal pro-B-type natriuretic peptide concentrations are markedly higher in the umbilical cord blood of newborns than in their mothers. Clin Chem 2005; 51: 913915.CrossRefGoogle ScholarPubMed
43. Bakker, J, Gies, I, Slavenburg, B, et al. Reference values for N-terminal pro-B-type natriuretic peptide in umbilical cord blood. Clin Chem 2004; 50: 2465.CrossRefGoogle ScholarPubMed
44. Bar-Oz, B, Lev-Sagie, A, Arad, I, Salpeter, L, Nir, A. N-terminal pro-B-type natriuretic peptide concentrations in mothers just before delivery, in cord blood, and in newborns. Clin Chem 2005; 51: 926927.CrossRefGoogle ScholarPubMed
45. Mir, TS, Laux, R, Hellwege, HH, et al. Plasma concentrations of aminoterminal pro atrial natriuretic peptide and aminoterminal pro brain natriuretic peptide in healthy neonates: marked and rapid increase after birth. Pediatrics 2003; 112: 896899.CrossRefGoogle ScholarPubMed
46. Nir, A, Bar-Oz, B, Perles, Z, et al. N-terminal pro-B-type natriuretic peptide: reference plasma levels from birth to adolescence. Elevated levels at birth and in infants and children with heart diseases. Acta Paediatr 2004; 93: 603607.CrossRefGoogle ScholarPubMed
47. Rauh, M, Koch, A. Plasma N-terminal pro-B-type natriuretic peptide concentrations in a control population of infants and children. Clin Chem 2003; 49: 15631564.CrossRefGoogle Scholar
48. Schwachtgen, L, Herrmann, M, Georg, T, et al. Reference values of NT-proBNP serum concentrations in the umbilical cord blood and in healthy neonates and children. Z Kardiol 2005; 94: 399404.CrossRefGoogle ScholarPubMed
49. Albers, S, Mir, TS, Haddad, M, Laer, S. N-Terminal pro-brain natriuretic peptide: normal ranges in the pediatric population including method comparison and interlaboratory variability. Clin Chem Lab Med 2006; 44: 8085.CrossRefGoogle ScholarPubMed
50. Cohen, S, Springer, C, Avital, A, et al. Amino-terminal pro-brain-type natriuretic peptide: heart or lung disease in pediatric respiratory distress? Pediatrics 2005; 115: 13471350.CrossRefGoogle ScholarPubMed
51. Eerola, A, Jokinen, E, Boldt, T, Pihkala, J. The influence of percutaneous closure of patent ductus arteriosus on left ventricular size and function: a prospective study using two- and three-dimensional echocardiography and measurements of serum natriuretic peptides. J Am Coll Cardiol 2006; 47: 10601066.CrossRefGoogle ScholarPubMed
52. Eerola, A, Pihkala, JI, Boldt, T, et al. Hemodynamic improvement is faster after percutaneous ASD closure than after surgery. Catheter Cardiovasc Interv 2007; 69: 432441.CrossRefGoogle ScholarPubMed
53. Geiger, R, Hammerer-Lercher, A, Url, C, et al. NT-proBNP concentrations indicate cardiac disease in pediatric patients. Int J Cardiol 2007; 123: 6365.CrossRefGoogle ScholarPubMed
54. Koch, AM, Rauh, M, Zink, S, Singer, H. Decreasing ratio of plasma N-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide according to age. Acta Paediatr 2006; 95: 805809.Google ScholarPubMed
55. Mir, TS, Flato, M, Falkenberg, J, et al. Plasma concentrations of N-terminal brain natriuretic peptide in healthy children, adolescents, and young adults: effect of age and gender. Pediatr Cardiol 2006; 27: 7377.CrossRefGoogle Scholar
56. Hammerer-Lercher, A, Geiger, R, Mair, J, et al. Utility of N-terminal pro-B-type natriuretic peptide to differentiate cardiac diseases from noncardiac diseases in young pediatric patients. Clin Chem 2006; 52: 14151419.CrossRefGoogle ScholarPubMed
57. Ko, HK, Lee, JH, Choi, BM, et al. Utility of the rapid B-type natriuretic peptide assay for detection of cardiovascular problems in newborn infants with respiratory difficulties. Neonatology 2008; 94: 1621.CrossRefGoogle ScholarPubMed
58. Reynolds, EW, Ellington, JG, Vranicar, M, Bada, HS. Brain-type natriuretic peptide in the diagnosis and management of persistent pulmonary hypertension of the newborn. Pediatrics 2004; 114: 12971304.CrossRefGoogle ScholarPubMed
59. Mannarino, S, Ciardelli, L, Garofoli, F, et al. Correlation between cord blood, perinatal BNP values and echocardiographic parameters in healthy Italian newborns. Early Hum Dev 2009; 85: 1317.CrossRefGoogle ScholarPubMed
60. Koch, A, Singer, H. Normal values of B type natriuretic peptide in infants, children, and adolescents. Heart 2003; 89: 875878.CrossRefGoogle ScholarPubMed
61. Kunii, Y, Kamada, M, Ohtsuki, S, et al. Plasma brain natriuretic peptide and the evaluation of volume overload in infants and children with congenital heart disease. Acta Med Okayama 2003; 57: 191197.Google ScholarPubMed
62. Holmgren, D, Westerlind, A, Lundberg, PA, Wahlander, H. Increased plasma levels of natriuretic peptide type B and A in children with congenital heart defects with left compared with right ventricular volume overload or pressure overload. Clin Physiol Funct Imaging 2005; 25: 263269.CrossRefGoogle ScholarPubMed
63. Muta, H, Ishii, M, Maeno, Y, Akagi, T, Kato, H. Quantitative evaluation of the changes in plasma concentrations of cardiac natriuretic peptide before and after transcatheter closure of atrial septal defect. Acta Paediatr 2002; 91: 649652.CrossRefGoogle ScholarPubMed
64. Takeuchi, D, Saji, T, Takatsuki, S, Fujiwara, M. Abnormal tissue doppler images are associated with elevated plasma brain natriuretic peptide and increased oxidative stress in acute Kawasaki disease. Circ J 2007; 71: 357362.CrossRefGoogle ScholarPubMed
65. Alehagen, U, Goetze, JP, Dahlstrom, U. Reference intervals and decision limits for B-type natriuretic peptide (BNP) and its precursor (Nt-proBNP) in the elderly. Clin Chim Acta 2007; 382: 814.CrossRefGoogle ScholarPubMed
66. Redfield, MM, Rodeheffer, RJ, Jacobsen, SJ, et al. Plasma brain natriuretic peptide concentration: impact of age and gender. J Am Coll Cardiol 2002; 40: 976982.CrossRefGoogle ScholarPubMed
67. Kroll, MH, Twomey, PJ, Srisawasdi, P. Using the single-compartment ratio model to calculate half-life, NT-proBNP as an example. Clin Chim Acta 2007; 380: 197202.CrossRefGoogle ScholarPubMed
68. Chang, AY, Abdullah, SM, Jain, T, et al. Associations among androgens, estrogens, and natriuretic peptides in young women: observations from the Dallas Heart Study. J Am Coll Cardiol 2007; 49: 109116.CrossRefGoogle ScholarPubMed
69. Lin, NC, Landt, ML, Trinkaus, KM, et al. Relation of age, severity of illness, and hemodynamics with brain natriuretic peptide levels in patients <20 years of age with heart disease. Am J Cardiol 2005; 96: 847850.CrossRefGoogle ScholarPubMed
70. Ozhan, H, Albayrak, S, Uzun, H, et al. Correlation of plasma B-type natriuretic peptide with shunt severity in patients with atrial or ventricular septal defect. Pediatr Cardiol 2007; 28: 272275.CrossRefGoogle ScholarPubMed
71. Mir, TS, Falkenberg, J, Friedrich, B, et al. Levels of brain natriuretic peptide in children with right ventricular overload due to congenital cardiac disease. Cardiol Young 2005; 15: 396401.CrossRefGoogle ScholarPubMed
72. Czernik, C, Lemmer, J, Metze, B, et al. B-type natriuretic peptide to predict ductus intervention in infants <28 weeks. Pediatr Res 2008; 64: 286290.CrossRefGoogle ScholarPubMed
73. Choi, BM, Lee, KH, Eun, BL, et al. Utility of rapid B-type natriuretic peptide assay for diagnosis of symptomatic patent ductus arteriosus in preterm infants. Pediatrics 2005; 115: e255e261.CrossRefGoogle ScholarPubMed
74. Flynn, PA, da Graca, RL, Auld, PA, Nesin, M, Kleinman, CS. The use of a bedside assay for plasma B-type natriuretic peptide as a biomarker in the management of patent ductus arteriosus in premature neonates. J Pediatr 2005; 147: 3842.CrossRefGoogle ScholarPubMed
75. Farombi-Oghuvbu, IO, Matthews, T, Mayne, PD, Guerin, H, Corcoran, D. N-terminal pro-B-type natriuretic peptide: a measure of significant patent ductus arteriosus. Arch Dis Child Fetal Neonatal Ed 2008; 93: F257F260.CrossRefGoogle ScholarPubMed
76. Puddy, VF, Amirmansour, C, Williams, AF, Singer, DR. Plasma brain natriuretic peptide as a predictor of haemodynamically significant patent ductus arteriosus in preterm infants. Clin Sci (Lond) 2002; 103: 7577.CrossRefGoogle ScholarPubMed
77. da Graca, RL, Hassinger, DC, Flynn, PA, et al. Longitudinal changes of brain-type natriuretic peptide in preterm neonates. Pediatrics 2006; 117: 21832189.CrossRefGoogle ScholarPubMed
78. Koch, A, Zink, S, Singer, H. B-type natriuretic peptide in paediatric patients with congenital heart disease. Eur Heart J 2006; 27: 861866.CrossRefGoogle ScholarPubMed
79. Cheung, EW, Lam, WW, Chiu, CS, et al. Plasma brain natriuretic peptide levels, right ventricular volume overload and exercise capacity in adolescents after surgical repair of tetralogy of Fallot. Int J Cardiol 2007; 121: 155162.CrossRefGoogle ScholarPubMed
80. Khositseth, A, Manop, J, Khowsathit, P, et al. N-terminal pro-brain natriuretic peptide as a marker in follow-up patients with tetralogy of Fallot after total correction. Pediatr Cardiol 2007; 28: 333338.CrossRefGoogle ScholarPubMed
81. Lindblade, CL, Chun, DS, Darragh, RK, et al. Value of plasma B-type natriuretic peptide as a marker for rejection in pediatric heart transplant recipients. Am J Cardiol 2005; 95: 909911.CrossRefGoogle ScholarPubMed
82. Claudius, I, Lan, YT, Chang, RK, Wetzel, GT, Alejos, J. Usefulness of B-type natriuretic peptide as a noninvasive screening tool for cardiac allograft pathology in pediatric heart transplant recipients. Am J Cardiol 2003; 92: 13681370.CrossRefGoogle ScholarPubMed
83. Lan, YT, Chang, RK, Alejos, JC, Burch, C, Wetzel, GT. B-type natriuretic peptide in children after cardiac transplantation. J Heart Lung Transplant 2004; 23: 558563.CrossRefGoogle ScholarPubMed
84. Rossano, JW, Denfield, SW, Kim, JJ, et al. B-type natriuretic peptide is a sensitive screening test for acute rejection in pediatric heart transplant patients. J Heart Lung Transplant 2008; 27: 649654.CrossRefGoogle ScholarPubMed
85. Geiger, M, Harake, D, Halnon, N, Alejos, JC, Levi, DS. Screening for rejection in symptomatic pediatric heart transplant recipients: the sensitivity of BNP. Pediatr Transplant 2008; 12: 563569.CrossRefGoogle ScholarPubMed
86. Flynn, TG, de Bold, ML, de Bold, AJ. The amino acid sequence of an atrial peptide with potent diuretic and natriuretic properties. Biochem Biophys Res Commun 1983; 117: 859865.CrossRefGoogle ScholarPubMed
87. Kangawa, K, Fukuda, A, Matsuo, H. Structural identification of beta- and gamma-human atrial natriuretic polypeptides. Nature 1985; 313: 397400.CrossRefGoogle ScholarPubMed
88. Kambayashi, Y, Nakao, K, Mukoyama, M, et al. Isolation and sequence determination of human brain natriuretic peptide in human atrium. FEBS Lett 1990; 259: 341345.CrossRefGoogle ScholarPubMed
89. Hino, J, Tateyama, H, Minamino, N, Kangawa, K, Matsuo, H. Isolation and identification of human brain natriuretic peptides in cardiac atrium. Biochem Biophys Res Commun 1990; 167: 693700.CrossRefGoogle ScholarPubMed
90. Yan, W, Wu, F, Morser, J, Wu, Q. Corin, a transmembrane cardiac serine protease, acts as a pro-atrial natriuretic peptide-converting enzyme. Proc Natl Acad Sci U S A 2000; 97: 85258529.CrossRefGoogle Scholar
91. Brandt, I, Lambeir, AM, Ketelslegers, JM, et al. Dipeptidyl-peptidase IV converts intact B-type natriuretic peptide into its des-SerPro form. Clin Chem 2006; 52: 8287.Google ScholarPubMed