Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-08T18:45:50.363Z Has data issue: false hasContentIssue false

The oxygen uptake efficiency slope in adults with CHD: group validity

Published online by Cambridge University Press:  15 January 2024

J. M. Redfern*
Affiliation:
Countess of Chester Hospital NHS Foundation Trust, Chester, UK
S. Hawkes
Affiliation:
Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool, LP, UK
A. Bryan
Affiliation:
Manchester University NHS Foundation Trust, Manchester, GM, UK
D. Cullington
Affiliation:
Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool, LP, UK
R. Ashrafi
Affiliation:
Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool, LP, UK
*
Corresponding author: J. M. Redfern; Email: james.redfern4@nhs.net

Abstract

The maximal oxygen uptake (V02 max) is a well-validated measure of cardiorespiratory function that is calculated during a maximal cardiopulmonary exercise test. V02 max enables physicians to objectively assess cardiopulmonary function to aid in decision-making for patients with CHD. A significant proportion of these patients however are unable to achieve a maximal exercise test, and as such, there is a need for reliable submaximal predictors of cardiorespiratory reserve.

The oxygen uptake efficiency slope represents a measure of how effectively oxygen is extracted from the lungs and taken into the body and can be calculated from a submaximal exercise test. Its reliability as a predictor of cardiorespiratory reserve has been validated in various patient populations, but there is limited evidence for its validity in adult patients with CHD.

Retrospective analysis of cardiopulmonary exercise test data in 238 consecutive patients with CHD who completed a maximal cardiopulmonary exercise test at our tertiary cardiology centre demonstrated a strong correlation between peak V02 and the oxygen uptake efficiency slope (0.936). A strong correlation with peak V02 was also demonstrated when oxygen uptake efficiency slope was calculated at ventilatory anaerobic threshold (OUESVAT), 75% (OUES75), and 90% (OUES90) of the test (0.833, 0.905, 0.927 respectively).

In adult patients with CHD who are unable to complete a maximal cardiopulmonary exercise test, the oxygen uptake efficiency slope is a reliable indicator of cardiopulmonary fitness which correlates strongly with peak V02 at or beyond the ventilatory anaerobic threshold. Further research is required to validate the findings in patients with less common anatomies and to assess the relationship between the oxygen uptake efficiency slope and mortality.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ferrer-Sargues, FJ, Peiro-Molina, E, Salvador-Coloma, P, et al. Cardiopulmonary rehabilitation improves respiratory muscle function and functional capacity in children with congenital heart disease. A prospective cohort study. Int J Environ Res Public Health 2020; 17: 4328.CrossRefGoogle ScholarPubMed
Wren, C, O’Sullivan, JJ. Survival with congenital heart disease and need for follow up in adult life. Heart 2001; 85: 438443.CrossRefGoogle ScholarPubMed
Engelfriet, P, Boersma, E, Oechslin, E, et al. The spectrum of adult congenital heart disease in Europe: morbidity and mortality in a 5 year follow-up period. The Euro Heart Survey on adult congenital heart disease. Eur Heart J 2005; 26: 23252333.CrossRefGoogle Scholar
Buber, J, Rhodes, J. Exercise physiology and testing in adult patients with congenital heart disease. Heart Fail Clin 2014; 10: 2333.CrossRefGoogle ScholarPubMed
Gratz, A, Hess, J, Hager, A. Self-estimated physical functioning poorly predicts actual exercise capacity in adolescents and adults with congenital heart disease. Eur Heart J 2009; 30: 497504.CrossRefGoogle ScholarPubMed
Hallock, P. Lactic acid production during rest and after exercise in subjects with various types of heart disease with special reference to congenital heart disease. J Clin Invest 1939; 18: 385394.CrossRefGoogle ScholarPubMed
Fernandes, SM, Alexander, ME, Graham, DA, et al. Exercise testing identifies patients at increased risk for morbidity and mortality following Fontan surgery. Congenit Heart Dis 2011; 6: 294303.CrossRefGoogle ScholarPubMed
Inuzuka, R, Diller, GP, Borgia, F, et al. Comprehensive use of cardiopulmonary exercise testing identifies adults with congenital heart disease at increased mortality risk in the medium term. Circulation 2012; 125: 250259.CrossRefGoogle ScholarPubMed
Taylor, HL, Buskirk, E, Henschel, A. Maximal oxygen intake as an objective measure of cardio-respiratory performance. J Appl Physiol 1955; 8: 7380.CrossRefGoogle ScholarPubMed
Mancini, DM, Eisen, H, Kussmaul, W, Mull, R, Edmunds, LH Jr., Wilson, JR. Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation 1991; 83: 778786.CrossRefGoogle ScholarPubMed
Baba, R, Nagashima, M, Goto, M, et al. Oxygen uptake efficiency slope: a new index of cardiorespiratory functional reserve derived from the relation between oxygen uptake and minute ventilation during incremental exercise. J Am Coll Cardiol 1996; 28: 15671572.CrossRefGoogle ScholarPubMed
American Thoracic, S. American college of chest P. ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med 2003; 167: 211277.Google Scholar
Buys, R, Cornelissen, V, Van De Bruaene, A, et al. Measures of exercise capacity in adults with congenital heart disease. Int J Cardiol 2011; 153: 2630.CrossRefGoogle ScholarPubMed
Yeh, MP, Gardner, RM, Adams, TD, Yanowitz, FG, Crapo, RO. Anaerobic threshold’: problems of determination and validation. J Appl Physiol Respir Environ Exerc Physiol 1983; 55: 11781186.Google ScholarPubMed
Shimizu, M, Myers, J, Buchanan, N, et al. The ventilatory threshold: method, protocol, and evaluator agreement. Am Heart J 1991; 122: 509516.CrossRefGoogle ScholarPubMed
Metra, M, Dei Cas, L, Panina, G, Visioli, O. Exercise hyperventilation chronic congestive heart failure, and its relation to functional capacity and hemodynamics. Am J Cardiol 1992; 70: 622628.CrossRefGoogle ScholarPubMed
Buller, NP, Poole-Wilson, PA. Mechanism of the increased ventilatory response to exercise in patients with chronic heart failure. Br Heart J 1990; 63: 281283.CrossRefGoogle ScholarPubMed
Uchida, K. Unit of oxygen uptake efficiency slope. J Sports Med Phys Fitness 2018; 7: 171175.CrossRefGoogle Scholar
Mezzani, A, Agostoni, P, Cohen-Solal, A, et al. Standards for the use of cardiopulmonary exercise testing for the functional evaluation of cardiac patients: a report from the exercise physiology section of the european association for cardiovascular prevention and rehabilitation. Eur J Cardiovasc Prev Rehabil 2009; 16: 249267.CrossRefGoogle ScholarPubMed
Mollard, P, Woorons, X, Antoine-Jonville, S, et al. ’Oxygen uptake efficiency slope’ in trained and untrained subjects exposed to hypoxia. Respir Physiol Neurobiol 2008; 161: 167173.CrossRefGoogle ScholarPubMed
Hollenberg, M, Tager, IB. Oxygen uptake efficiency slope: an index of exercise performance and cardiopulmonary reserve requiring only submaximal exercise. J Am Coll Cardiol 2000; 36: 194201.CrossRefGoogle ScholarPubMed
Bongers, BC, Hulzebos, HJ, Blank, AC, van Brussel, M, Takken, T. The oxygen uptake efficiency slope in children with congenital heart disease: construct and group validity. Eur J Cardiovasc Prev Rehabil 2011; 18: 384392.CrossRefGoogle ScholarPubMed
Toste, A, Soares, R, Feliciano, J, et al. Prognostic value of a new cardiopulmonary exercise testing parameter in chronic heart failure: oxygen uptake efficiency at peak exercise - comparison with oxygen uptake efficiency slope. Rev Port Cardiol 2011; 30: 781787.CrossRefGoogle ScholarPubMed
Woods, PR, Bailey, KR, Wood, CM, Johnson, BD. Submaximal exercise gas exchange is an important prognostic tool to predict adverse outcomes in heart failure. Eur J Heart Fail 2011; 13: 303310.CrossRefGoogle ScholarPubMed
Coeckelberghs, E, Buys, R, Goetschalckx, K, Cornelissen, VA, Vanhees, L. Prognostic value of the oxygen uptake efficiency slope and other exercise variables in patients with coronary artery disease. Eur J Prev Cardiol 2016; 23: 237244.CrossRefGoogle ScholarPubMed
Woods, PR, Frantz, RP, Taylor, BJ, Olson, TP, Johnson, BD. The usefulness of submaximal exercise gas exchange to define pulmonary arterial hypertension. J Heart Lung Transplant 2011; 30: 11331142.CrossRefGoogle ScholarPubMed
Tang, Y, Luo, Q, Liu, Z, et al. Oxygen uptake efficiency slope predicts poor outcome in patients with idiopathic pulmonary arterial hypertension. J Am Heart Assoc 2017; 6(7): e005037.CrossRefGoogle ScholarPubMed
Tan, X, Yang, W, Guo, J, et al. Usefulness of decrease in oxygen uptake efficiency to identify gas exchange abnormality in patients with idiopathic pulmonary arterial hypertension. PLoS One 2014; 9: e98889.CrossRefGoogle ScholarPubMed
Giardini, A, Specchia, S, Gargiulo, G, Sangiorgi, D, Picchio, FM. Accuracy of oxygen uptake efficiency slope in adults with congenital heart disease. Int J Cardiol 2009; 133: 7479.CrossRefGoogle ScholarPubMed
Kempny, A, Dimopoulos, K, Uebing, A, et al. Reference values for exercise limitations among adults with congenital heart disease. Relation to activities of daily life--single centre experience and review of published data. Eur Heart J 2012; 33: 13861396.CrossRefGoogle ScholarPubMed
Graham, BL, Steenbruggen, I, Miller, MR, et al. Standardization of spirometry 2019 Update. An official American thoracic society and european respiratory society technical statement. Am J Respir Crit Care Med 2019; 200: e70e88.CrossRefGoogle ScholarPubMed
Quanjer, PH, Stanojevic, S, Cole, TJ, et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J 2012; 40: 13241343.CrossRefGoogle ScholarPubMed
Wasserman, K. Principles of Exercise Testing and Interpretation : Including Pathophysiology and Clinical Applications, vol. xvi, 4th edn. Lippincott Williams & Wilkins, Philadelphia, 2005, 585–p.Google Scholar
Hansen, JE, Sue, DY, Wasserman, K. Predicted values for clinical exercise testing. Am Rev Respir Dis 1984; 129: S4955.CrossRefGoogle ScholarPubMed