Skip to main content Accessibility help

The nomenclature, definition and classification of cardiac structures in the setting of heterotaxy

  • Jeffrey P. Jacobs (a1), Robert H. Anderson (a2), Paul M. Weinberg (a3), Henry L. Walters (a4), Christo I. Tchervenkov (a5), Danny Del Duca (a5), Rodney C. G. Franklin (a6), Vera D. Aiello (a7), Marie J. Béland (a8), Steven D. Colan (a9), J. William Gaynor (a10), Otto N. Krogmann (a11), Hiromi Kurosawa (a12), Bohdan Maruszewski (a13), Giovanni Stellin (a14) and Martin J. Elliott (a15)...


In 2000, The International Nomenclature Committee for Pediatric and Congenital Heart Disease was established. This committee eventually evolved into the International Society for Nomenclature of Paediatric and Congenital Heart Disease. The working component of this international nomenclature society has been The International Working Group for Mapping and Coding of Nomenclatures for Paediatric and Congenital Heart Disease, also known as the Nomenclature Working Group. The Nomenclature Working Group created the International Paediatric and Congenital Cardiac Code, which is available for free download from the internet at [http://www.IPCCC.NET].

In previous publications from the Nomenclature Working Group, unity has been produced by cross-mapping separate systems for coding, as for example in the treatment of the functionally univentricular heart, hypoplastic left heart syndrome, or congenitally corrected transposition. In this manuscript, we review the nomenclature, definition, and classification of heterotaxy, also known as the heterotaxy syndrome, placing special emphasis on the philosophical approach taken by both the Bostonian school of segmental notation developed from the teachings of Van Praagh, and the European school of sequential segmental analysis. The Nomenclature Working Group offers the following definition for the term “heterotaxy”: “Heterotaxy is synonymous with ‘visceral heterotaxy’ and ‘heterotaxy syndrome’. Heterotaxy is defined as an abnormality where the internal thoraco-abdominal organs demonstrate abnormal arrangement across the left-right axis of the body. By convention, heterotaxy does not include patients with either the expected usual or normal arrangement of the internal organs along the left-right axis, also known as ‘situs solitus’, nor patients with complete mirror-imaged arrangement of the internal organs along the left-right axis also known as ‘situs inversus’.” “Situs ambiguus is defined as an abnormality in which there are components of situs solitus and situs inversus in the same person. Situs ambiguus, therefore, can be considered to be present when the thoracic and abdominal organs are positioned in such a way with respect to each other as to be not clearly lateralised and thus have neither the usual, or normal, nor the mirror-imaged arrangements.”

The heterotaxy syndrome as thus defined is typically associated with complex cardiovascular malformations. Proper description of the heart in patients with this syndrome requires complete description of both the cardiac relations and the junctional connections of the cardiac segments, with documentation of the arrangement of the atrial appendages, the ventricular topology, the nature of the unions of the segments across the atrioventricular and the ventriculoarterial junctions, the infundibular morphologies, and the relationships of the arterial trunks in space. The position of the heart in the chest, and the orientation of the cardiac apex, must also be described separately. Particular attention is required for the venoatrial connections, since these are so often abnormal. The malformations within the heart are then analysed and described separately as for any patient with suspected congenital cardiac disease. The relationship and arrangement of the remaining thoraco-abdominal organs, including the spleen, the lungs, and the intestines, also must be described separately, because, although common patterns of association have been identified, there are frequent exceptions to these common patterns. One of the clinically important implications of heterotaxy syndrome is that splenic abnormalities are common. Investigation of any patient with the cardiac findings associated with heterotaxy, therefore, should include analysis of splenic morphology. The less than perfect association between the state of the spleen and the form of heart disease implies that splenic morphology should be investigated in all forms of heterotaxy, regardless of the type of cardiac disease. The splenic morphology should not be used to stratify the form of disease within the heart, and the form of cardiac disease should not be used to stratify the state of the spleen. Intestinal malrotation is another frequently associated lesion that must be considered. Some advocate that all patients with heterotaxy, especially those with isomerism of the right atrial appendages or asplenia syndrome, should have a barium study to evaluate for intestinal malrotation, given the associated potential morbidity. The cardiac anatomy and associated cardiac malformations, as well as the relationship and arrangement of the remaining thoraco-abdominal organs, must be described separately. It is only by utilizing this stepwise and logical progression of analysis that it becomes possible to describe correctly, and to classify properly, patients with heterotaxy.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The nomenclature, definition and classification of cardiac structures in the setting of heterotaxy
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The nomenclature, definition and classification of cardiac structures in the setting of heterotaxy
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The nomenclature, definition and classification of cardiac structures in the setting of heterotaxy
      Available formats


Corresponding author

Correspondence to: Jeffrey P. Jacobs, MD, FACS, FACC, FCCP, Cardiovascular and Thoracic Surgeon, The Congenital Heart Institute of Florida (CHIF), Clinical Associate Professor, University of South Florida (USF), Cardiac Surgical Associates (CSA), 603 Seventh Street South, Suite 450, Saint Petersburg, FL 33701. Tel: (727) 822 6666; Cell Phone: (727) 235–3100; Fax: (727) 821 5994; E-mail:,,


Hide All
1. Jacobs, JP, Franklin, RCG, Jacobs, ML, et al. . Classification of the functionally univentricular heart: unity from mapped codes. Cardiol Young 2006; 16 (1 Suppl): 921.
2. Tchervenkov, CI, Jacobs, JP, Weinberg, PM, et al. . The nomenclature, definition and classification of hypoplastic left heart syndrome. Cardiol Young 2006; 16: 339368.
3. Jacobs, JP, Franklin, RCG, Wilkinson, JL, et al. . The nomenclature, definition and classification of discordant atrioventricular connections. Cardiol Young 2006; 16 (3 Suppl): 7284.
4. Van Praagh, R. The segmental approach to diagnosis in congenital heart disease. Birth Defects original article series 1972; 8: 423.
5. Van Praagh, RTerminology of congenital heart disease: glossary and commentary, Circulation 1977; 56: 139143.
6. Van Praagh, R, Vlad, P. Dextrocardia, mesocardia, and levocardia: the segmental approach in congenital heart disease. In: Keith, JD, Rowe, RD, Vlad, P (eds). Heart disease in infancy and childhood, 3rd edn. Macmillan, New York, 1978, pp ….
7. Anderson, RH, Becker, AE, Freedom, RM, et al. . Sequential segmental analysis of congenital heart disease. Pediatr Cardiol 1984; 5: 281287.
8. Wilcox, BR, Anderson, RH. Surgical anatomy of the heart, 2nd edn. Gower Medical Publishing, London, 1992.
9. Anderson, RH, Ho, SY. Sequential segmental analysis – description and catergorization for the millenium. Cardiol Young 1997; 7: 98116.
10. Van Mierop, LHS, Gessner, IH, Schiebler, GL. Asplenia and polysplenia syndromes. In: Bergsma, D (ed). Birth defects: atlas and compendium. Williams & Wilkins, Baltimore, 1972, pp ….
11. Macartney, FJ. Classification and nomenclature of congenital heart defects. In: Stark, J, deLeval, M (eds). Surgery for congenital heart defects, 2nd edn. WB Saunders, Philadelphia, 1994, pp ….
12. Jacobs, JP. Nomenclature and classification for congenital cardiac surgery. In: Mavroudis, C, Backer, CL (eds). Pediatric Cardiac Surgery, 3rd edn. Mosby Inc., An affiliate of Elsevier, Philadelphia, Pennsylvania, 2003, pp 2538.
13. Fontana, GP, Burke, RP. Straddling and overriding atrioventricular valves. In: Baue, AE, Geha, AS, Hammond, GL, et al. (eds). Glenn’s Thoracic and Cardiovascular Surgery, 6th edn. Appleton & Lange, Stamford, Conn, 1996, pp ...
14. Van Praagh, R. Cardiac anatomy. In: Chang, AC, Hanley, FL, Wernovsky, G, Wessel, DL (eds). Pediatric Cardiac Intensive Care, Williams and Wilkins, Baltimore, Maryland, 1998, pp 315.
15. Huhta, JC, Smallhorn, JF, Macartney, FJ. Two dimensional echocardiographic diagnosis of situs. Br Heart J 1982; 48: 97108.
16. Van Praagh, R, David, I, Wright, GB, Van Praagh, S. Large RV plus small LV is not single LV. Circulation 1980; 61: 10571058.
17. Keeton, BR, Macartney, FJ, Hunter, S, et al. . Univentricular heart of right ventricular type with double or common inlet. Circulation 1979; 59: 403411.
18. Uemura, H, Ho, SY, Devine, WA, Kilpatrick, LL, Anderson, RH. Atrial appendages and venoatrial connections in hearts with patients with visceral heterotaxy. Ann Thorac Surg 1995; 60: 561569.
19. Van Mierop, LHS, Wiglesworth, FW. Isomerism of the cardiac atria in the asplenia syndrome. Lab Invest 1964; 11: 13031315.
20. Van Mierop, LHS, Patterson, PR, Reynolds, RW. Two cases of congenital asplenia with isomerism of the cardiac atria and the sinoatrial nodes. Am J Cardiol 1964; 13: 407412.
21. Moller, JH, Nakib, A, Anderson, RC, Edwards, JE. Congenital cardiac disease associated with polysplenia: a developmental complex of bilateral “left-sidedness”. Circulation 1967; 36: 789799.
22. Van Praagh, R, Van Praagh, S. Atrial isomerism in the heterotaxy syndromes with asplenia, or polysplenia, or normally formed spleen: an erroneous concept. Am J Cardiol 1990; 66: 15041506.
23. Liu, C, Liu, W, Lu, M-F, Brown, NA, Martin, JF. Regulation of left-right asymmetry by thresholds of Pitx2 activity. Development 2001; 128: 20392048.
24. Bamforth, SD, Bragança, J, Farthing, CR, et al. . Cited2 controls left-right patterning and heart development through a Nodal-Pitx2c pathway. Nat Genet 2004; 36: 11891196.
25. Schilling, TF, Concorder, JP, Ingham, PW. Regulation of left-right asymmetries in the zebrafish by shh and BMP4. Dev Biol 1999; 210: 277287.
26. Macartney, FJ, Anderson, RH, Smallhorn, JF, et al. . Segmental analysis in practice. In: Becker, AE, Marceletti, C, Losekoot, TG (eds). Paediatric Cardiology Volume 3, Churchill Livingstone, Edinburgh, 1980, pp ...
27. Macartney, FJ, Partridge, JB, Shinebourne, EA, et al. . Identification of atrial situs. In: Anderson, RH, Shinebourne, EA (eds). Paediatric Cardiology 1977. Churchill Livingstone, Edinburgh, 1978, pp ...
28. Van Mierop, LH, Eisen, S, Schiebler, GL. The radiographic appearance of the tracheobronchial tree as an indicator of the visceral situs. Am J Cardiol 1970; 26: 432435.
29. Partridge, JB, Scott, O, Deverall, PB, Macartney, FJ. Visualization and measurement of the main bronchi by tomography as an objective indicator of thoracic situs in congenital heart disease. Circulation 1975; 51: 188196.
30. Brandt, PW, Calder, AL. Cardiac connections: the segmental approach to radiologic diagnosis in congenital heart disease. Curr Probl Diagn Radiol 1977; 7: 135.
31. Stanger, P, Rudolph, AM, Edwards, JE. Cardiac malpositions: an overview based on study of sixty-five necropsy specimens. Circulation 1977; 56: 159172.
32. Caruso, G, Becker, AE. How to determine atrial situs? Considerations initiated by 3 cases of absent spleen with a discordant anatomy between bronchi and atria. Br Heart J 1979; 41: 559567.
33. Landing, BH, Lawrence, TY, Jr.Payne, VC, Wells, TR. Bronchial anatomy in syndromes with abnormal visceral situs, abnormal spleen and congenital heart disease. Am J Cardiol 1971; 28: 456462.
34. Layman, TE, Levine, MA, Amplatz, K, Edwards, JE. “Asplenic syndrome” in association with rudimentary spleen. Am J Cardiol 1967; 20: 136140.
35. 3rdWalters, HW, Mavroudis, C, Tchervenkov, CI, Jacobs, JP, Lacour-Gayet, F, Jacobs, ML. Congenital Heart Surgery Nomenclature and Database Project: double outlet right ventricle. Ann Thorac Surg 2000; 69 (Suppl): S249263.
36. Tchervenkov, CI, 3rd.Walters, HW, Chu, VFCongenital Heart Surgery Nomenclature and Database Project: double outlet left ventricle, Ann Thorac Surg 2000; 69 (Suppl): S264269.
37. Van Praagh, R, Van Praagh, S, Vlad, P, Keith, JD. Anatomic types of congenital dextrocardia. Diagnostic and embryologic implications. Am J Cardiol 1964; 13: 510531.
38. Shinebourne, EA, Macartney, FJ, Anderson, RH. Sequential chamber localisation. Br Heart J 1976; 38: 327340.
39. Anderson, RH, Smith, A, Wilkinson, JL. Disharmony between atrioventricular connections and segmental combinations: unusual variants of “crisscross” hearts. JACC 1987; 10: 12741277.
40. Wilkinson, JL, Cochrane, AD, Karl, TRCongenital Heart Surgery Nomenclature and Database Project: corrected (discordant) transposition of the great arteries (and related malformations), Ann Thorac Surg 2000; 69 (Suppl): S236248.
41. Wilkinson JL, Acerete F. Terminological pitfalls in congenital heart disease. Reappraisal of some confusing terms, with an account of a simplified system of basic nomenclature. Br Heart J 1973; 35: 1166-1177. PMID: 4761119 [PubMed – indexed for MEDLINE].
42. Macartney, FJ, Zuberbuhler, JR, Anderson, RH. Morphological considerations pertaining to recognition of atrial isomerism. Consequences for sequential chamber localisation. Br Heart J 1980; 44: 657667.
43. Uemura, H, Ho, SY, Anderson, RH, et al. . The surgical anatomy of coronary venous return in hearts with isomeric atrial appendages. J Thorac Cardiovasc Surg 1995; 110: 436444.
44. Uemura, H, Ho, SY, Devine, WA, Anderson, RH. Analysis of visceral heterotaxy according to splenic status, appendage morphology, or both. Am J Cardiol 1995; 76: 846849.
45. Van Praagh, S, Kreutzer, J, Van Praagh, R. Systemic and pulmonary venous connections in visceral heterotaxy, with emphasis on the diagnosis of the atrial situs: a study of 109 postmortem cases. In: Clark, EB, Takao, A (eds). Developmental Cardiology: Morphogenesis and Function, 1st edn. Futura Publishing Co., Inc., Mount Kisco, NY, 1990, pp 671727.
46. Zhu, L. Belmont JW. Ware SM. Genetics of human heterotaxias. Eur J Hum Genet 2006; 14: 1725.
47. Berg, C, Geipel, A, Kamil, D, et al. . The syndrome of right isomerism – prenatal diagnosis and outcome. Ultraschall in der Medizin 2006; 27: 225233.
48. Solomons TWG (University of South Florida). Organic Chemistry, 2nd edn. John Wiley and Sons, Inc., New York, 1980, pp 282283.
49. Bartram, U, Johannes Wirbelauer, J, Speer, CP. Heterotaxy syndrome – asplenia and polysplenia as indicators of visceral Mmlposition and complex congenital heart disease. Biol Neonate 2005; 88: 278290. DOI: 10.1159/000087625
50. Ivemark, BI. Implications of agenesis of the spleen on the pathogenesis of conotruncus anomalies in childhood; an analysis of the heart malformations in the splenic agenesis syndrome, with fourteen new cases. Acta Paediatr Suppl 1955; 44 (104 Suppl): 7110.
51., accessed April 8, 2007.
52. Franklin, RCG, Jacobs, JP, Tchervenkov, CI, Béland, M. Bidirectional crossmap of the Short Lists of the European Paediatric Cardiac Code and the International Congenital Heart Surgery Nomenclature and Database Project. Cardiol Young 2002; 12 (II Suppl): 1822.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed