Skip to main content Accessibility help
×
Home

Management of late presentation congenital heart disease

  • Parvathi U. Iyer (a1), Guillermo E. Moreno (a2), Luiz Fernando Caneo (a3), Tahira Faiz (a4), Lara S. Shekerdemian (a5) and Krishna S. Iyer (a6)...

Abstract

In many parts of the world, mostly low- and middle-income countries, timely diagnosis and repair of congenital heart diseases (CHDs) is not feasible for a variety of reasons. In these regions, economic growth has enabled the development of cardiac units that manage patients with CHD presenting later than would be ideal, often after the window for early stabilisation – transposition of the great arteries, coarctation of the aorta – or for lower-risk surgery in infancy – left-to-right shunts or cyanotic conditions. As a result, patients may have suffered organ dysfunction, manifest signs of pulmonary vascular disease, or the sequelae of profound cyanosis and polycythaemia. Late presentation poses unique clinical and ethical challenges in decision making regarding operability or surgical candidacy, surgical strategy, and perioperative intensive care management.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Management of late presentation congenital heart disease
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Management of late presentation congenital heart disease
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Management of late presentation congenital heart disease
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Correspondence to: Parvathi U. Iyer, Paediatric Intensive Care Unit, Fortis Escorts Heart Institute, Okhla Road, New Delhi-110025, India. Tel: +91 11 47134541; Fax: +91 11 2682 5013; E-mail: puiyer95@gmail.com

References

Hide All
1. Nguyen, N, Leon-Wyss, J, Iyer, KS, Pezzela, AT. Paediatric cardiac surgery in low-income and middle-income countries: a continuing challenge. Arch Dis Child 2015; 100: 11561159.
2. Rao, SG. Pediatric cardiac surgery in developing countries. Pediatr Cardiol 2007; 28: 144148.
3. Mirabel, M, Lachaud, M, Offredo, L, et al. Cardiac surgery in low-income settings: 10 years of experience from two countries. Chirurgie cardiaque : dix ans d’expérience dans deux pays en voie de développement. Arch Cardiovasc Dis 2017; 110: 8290.
4. Rahajoe, AU. Management of patients with congenitally malformed hearts in Indonesia. Cardiol Young 2007; 17: 584588.
5. Brown, KL, Ridout, DA, Hoskote, A, Verhulst, A, Ricci, M, Bull, C. Delayed diagnosis of congenital heart disease worsens preoperative condition and outcome of surgery in neonates. Heart 2006; 92: 12981302.
6. Bonnet, D, Coltri, A, Butera, G, et al. Detection of transposition of the great arteries in fetuses reduces neonatal morbidity and mortality. Circulation 1999; 99: 916918.
7. Lopes, AA, Barst, RJ, Haworth, SG, et al. Repair of congenital heart disease with associated pulmonary hypertension in children: what are the minimal investigative procedures? Consensus statement from the Congenital Heart Disease and Pediatric Task Forces, Pulmonary Vascular Research Institute (PVRI). Pulm Circ 2014; 4: 330341.
8. Abman, SH, Hansmann, G, Archer, SL, et al. Pediatric pulmonary hypertension guidelines from the American Heart Association and American Thoracic Society. Circulation 2015; 132: 20372099.
9. Galie, N, Humbert, M, Vachiery, JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J. 2015; 46: 18551856.
10. Viswanathan, S, Kumar, RK. Assessment of operability of congenital cardiac shunts with increased pulmonary vascular resistance. Catheter Cardiovasc Interv 2008; 71: 665670.
11. Myers, PO, Tissot, C, Beghetti, M. Assessment of operability of patients with pulmonary arterial hypertension associated with congenital heart disease – do we have the good tools to predict success? Circ J 2014; 78: 411.
12. Novik, WM, Gurbuz, AT, Watson, DC, et al. Double patch closure of ventricular septal defect with increased pulmonary vascular resistance. Ann Thorac Surg 1998; 66: 15331538.
13. Gan, HL, Zhang, JQ, Zhang, ZG, Luo, Y, Zhou, QW, Bo, P. The unidirectional valve patch provides no benefits to early and long-term survival in patients with ventricular septal defect and severe pulmonary artery hypertension. J Thorac Cardiovasc Surg 2010; 139: 950955.
14. Zhang, B, Wu, S, Liang, J, et al. Unidirectional monovalve homologous aortic patch for repair of ventricular septal defect with pulmonary hypertension. Ann Thorac Surg 2007; 83: 21762181.
15. Talwar, S, Keshri, VK, Choudhary, SK, et al. Unidirectional valved patch closure of ventricular septal defects with severe pulmonary arterial hypertension: hemodynamic outcomes. J Thorac Cardiovasc Surg 2014; 148: 25702575.
16. Sridhar, A, Sahayaraj, A, Lakshmi, N, et al. Cruciate fenestration in ventricular septal defect patch for high-risk patients with high pulmonary vascular resistance. World J Pediatr Congenit Heart Surg 2014; 5: 494496.
17. Lin, MT, Chen, YS, Huang, SC, et al. Alternative approach for selected severe pulmonary hypertension of congenital heart defect without initial correction – palliative surgical treatment. Int J Cardiol 2011; 151: 313317.
18. Lopes, AA, Mesquita, SMF. Atrial septal defect in adults: does repair always mean cure? Arq Bras Cardiol 2014; 103: 446448.
19. Oliver, JM, Gallego, P, González, AE, et al. Surgical closure of atrial septal defect before or after the age of 25 years. comparison with the natural history of unoperated patients. Rev Esp Cardiol 2002; 55: 953961.
20. Beghetti, M, Galie, N, Bonnet, D. Can “inoperable” congenital heart defects become operable in patients with pulmonary arterial hypertension? Dream or reality? Congenit Heart Dis 2012; 7: 311.
21. Giannakoulas, G, Gatzoulis, MA. Pulmonary arterial hypertension in congenital heart disease: current perspectives and future challenges. Hellenic J Cardiol 2016; 57: 218222.
22. Dimopoulos, K, Wort, SJ, Gatzoulis, MA. Pulmonary hypertension related to congenital heart disease: a call for action. Eur Heart J 2014; 35: 691700.
23. Bajpai, P, Shah, S, Misri, A, Rao, S, Suresh, PV, Maheshwari, S. Assessment of operability in d-transposition of great arteries with ventricular septal defect: a practical method. Ann Pediatr Cardiol 2011; 4: 4144.
24. Talwar, S, Meena, A, Choudhary, SK, et al. Repair of tetralogy of Fallot in or beyond the fourth decade of life. Congenit Heart Dis 2014; 9: 424432.
25. Kaushal, SK, Radhakrishanan, S, Dagar, KS, et al. Significant intraoperative right ventricular outflow gradients after repair of tetralogy of Fallot. To revise or not revise? Ann Thorac Surg 1999; 68: 17051712.
26. Mellander, M. Diagnosis and management of life-threatening cardiac malformations in the newborn. Semin Fetal Neonatal Med 2013; 18: 302310.
27. Granelli, AD, Wennergren, M, Sandberg, K, et al. Impact of pulse oximetry screening on the detection of duct-dependent congenital heart disease: a Swedish prospective screening study in 39821 newborns. BMJ 2009; 338: a3037.
28. Petit, CJ, Rome, JJ, Wernovsky, G, et al. Preoperative brain injury in transposition of great arteries in associated with oxygenation and time to surgery, not balloon atrial septostomy. Circulation 2009; 119: 709716.
29. Bouzguenda, I, Marini, D, Ou, P, Boudjemline, Y, Bonnet, D, Agnoletti, G. Percutaneous treatment of neonatal aortic coarctation presenting with severe left ventricular dysfunction as a bridge to surgery. Cardiol Young 2009; 19: 244251.
30. McGuinness, JG, Elhassan, Y, Lee, SY, et al. Do high-risk infants have a poorer outcome from primary repair of coarctation? Analysis of 192 infants over 20 years. Ann Thoracic Surg 2010; 90: 20232027.
31. Kothari, SS, Ramakrishnan, S, Senguttuvan, NB, Gupta, SK, Bisoi, AK. Ductal recanalization and stenting for late presenters with TGA intact ventricular septum. Ann Pediatr Cardiol 2011; 4: 135138.
32. Sivakumar, K. Atrial septal stenting – How I do it? Ann Pediatr Cardiol 2015; 8: 3743.
33. Reddy, NS, Kappanayil, M, Balachandran, R, et al. Preoperative determinants of outcomes of infant heart surgery in a limited-resource setting. Semin Thoracic Surg and Cardiovasc Surg 2015; 27: 331338.
34. Nathan, M. Late arterial switch operation for transposition with intact septum. World J Pediatr Congenit Heart Surg 2014; 5: 226228.
35. Dabritz, S, Engelhardt, W, Von Bernuth, G, Messmer, BJ. Trial of pulmonary artery banding: a diagnostic criterion for “one stage” arterial switch in simple transposition of the great arteries beyond the neonatal period. Eur J Cardiothorac Surg 1997; 11: 112116.
36. Kang, N, De Leval, MR, Elliott, M, et al. Extending the boundaries of the primary arterial switch operation in patients with transposition of the great arteries and intact ventricular septum. Circulation 2004; 110 (Suppl 1): II123II127.
37. Sarris, GE, Chatzis, AC, Ciannopoulos, NM, et al. The arterial switch operation in Europe for transposition of the great arteries: a multiinstitutional study from the European Congenital Heart Surgeons Association. J Thorac Cardiovasc Surg 2006; 132: 633639.
38. Ismail, SR, Kabbani, MS, Najm, HK, Abusuliman, RM, Elbarbary, M. Early outcome for the primary arterial switch operation beyond the age of 3 weeks. Pediatr Cardiol 2010; 31: 663667.
39. Edwin, F, Mamorare, H, Brink, J, Kinsley, R. Best evidence topic – congenital primary arterial switch operation for transposition of the great arteries with intact ventricular septum – is it safe after three weeks of age? Interact Cardiovasc Thorac Surg 2010; 11: 641644.
40. Ma, K, Hua, Z, Yang, K, et al. Arterial switch for transposed great vessels with intact ventricular septum beyond one month of age. Ann Thorac Surg 2014; 97: 189195.
41. Bisoi, AK, Ahmed, T, Malankar, DP, et al. Midterm outcome of primary arterial switch operation beyond six weeks of life in children with transposition of great arteries and intact ventricular septum. World J Pediatr Congenit Heart Surg 2014; 5: 219225.
42. Iyer, KS, Sharma, R, Kumar, K, et al. Serial echocardiography for decision making in rapid two-stage arterial switch operation. Ann Thorac Surg 1995; 60: 658664.
43. Sharma, R, Choudhary, SK, Bhan, S, et al. Left ventricle is better suited as pulmonary ventricle in simple transposition with severe pulmonary hypertension. Ann Thorac Surg 2002; 74: 16121615.
44. Wernovsky, G, Wypij, D, Jonas, RA, et al. Postoperative course and hemodynamic profile after the arterial switch operation in neonates and infants: a comparison of low-flow cardiopulmonary bypass and circulatory arrest. Circulation 1995; 92: 22262235.
45. Kumar, G, Iyer, PU. Management of perioperative low cardiac output state without extracorporeal life support: What is feasible ? Ann Pediatr Cardiol 2010; 3: 147158.
46. Shekerdemian, L. Nonpharmacologic treatment of acute heart failure. Curr Opin Pediatr 2001; 13: 240246.
47. Shekerdemian, L. Perioperative manipulation of the circulation in children with congenital heart disease. Heart 2009; 95: 12861296.
48. Bronicki, RA, Chang, AC. Management of the postoperative pediatric cardiac surgical patient. Crit Care Med 2011; 39: 19741984.
49. Taylor, M, Laussen, P. Fundamentals of management of acute postoperative pulmonary hypertension. Pediatr Crit Care Med 2010; 11: S27S29.
50. Namachivayam, P, Theilen, U, Butt, WW, Cooper, SM, Penny, DJ, Shekerdemian, LS. Sildenafil prevents rebound pulmonary hypertension after withdrawal of nitric oxide in children. Am J Respir Crit Care Med 2006; 174: 10421047.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed