Skip to main content Accessibility help

Living the heart in three dimensions: applications of 3D printing in CHD

  • Mari Nieves Velasco Forte (a1) (a2) (a3), Tarique Hussain (a4), Arno Roest (a3), Gorka Gomez (a2), Monique Jongbloed (a3), John Simpson (a1) (a5), Kuberan Pushparajah (a1) (a5), Nick Byrne (a1) and Israel Valverde (a1) (a2) (a3)...
  • Please note a correction has been issued for this article.


Advances in biomedical engineering have led to three-dimensional (3D)-printed models being used for a broad range of different applications. Teaching medical personnel, communicating with patients and relatives, planning complex heart surgery, or designing new techniques for repair of CHD via cardiac catheterisation are now options available using patient-specific 3D-printed models. The management of CHD can be challenging owing to the wide spectrum of morphological conditions and the differences between patients. Direct visualisation and manipulation of the patients’ individual anatomy has opened new horizons in personalised treatment, providing the possibility of performing the whole procedure in vitro beforehand, thus anticipating complications and possible outcomes. In this review, we discuss the workflow to implement 3D printing in clinical practice, the imaging modalities used for anatomical segmentation, the applications of this emerging technique in patients with structural heart disease, and its limitations and future directions.


Corresponding author

Author for correspondence: Mari Nieves Velasco-Forte, School of Biomedical Engineering and Imaging Sciences, King’s College London, F04 Lambeth Wing, St Thomas’ Hospital, Westminster Bridge Rd, Lambeth, London SE1 7EH, UK. Tel: +44 7849 912341; E-mail:


Hide All
1. Heissler, E, Fischer, FS, Bolouri, S, et al. Custom-made cast titanium implants produced with CAD/CAM for the reconstruction of cranium defects. Int J Oral Maxillofac Surg 1998;27:334338.
2. Sailer, HF, Haers, PE, Zollikofer, CP, et al. The value of stereolithographic models for preoperative diagnosis of craniofacial deformities and planning of surgical corrections. Int J Oral Maxillofac Surg 1998;27:327333.
3. Park, GC, Wiseman, JB, Clark, WD. Correction of congenital microtia using stereolithography for surgical planning. Plast Reconstr Surg 2000;105:14441447.
4. Chang, PS, Parker, TH, Patrick, CW Jr., Miller, MJ. The accuracy of stereolithography in planning craniofacial bone replacement. J Craniofac Surg 2003;14:164170.
5. D’Urso, PS, Barker, TM, Earwaker, WJ, et al. Stereolithographic biomodelling in cranio-maxillofacial surgery: a prospective trial. J Craniomaxillofac Surg 1999;27:3037.
6. Winder, J, Bibb, R. Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J Oral Maxillofac Surg 2005;63:10061015.
7. Munjal, S, Leopold, SS, Kornreich, D, Shott, S, Finn, HA. CT-generated 3-dimensional models for complex acetabular reconstruction. J Arthroplasty 2000;15:644653. doi: 10.1054/arth.2000.6629.
8. Minns, RJ, Bibb, R, Banks, R, Sutton, RA. The use of a reconstructed three-dimensional solid model from CT to aid the surgical management of a total knee arthroplasty: a case study. Med Eng Phys 2003;25:523526.
9. Velasco Forte, MN, Byrne, N, Valverde Perez, I, et al. 3D printed models in patients with coronary artery fistulae: anatomical assessment and interventional planning. EuroIntervention 2017;13:e1080e1083. doi: 10.4244/EIJ-D-16-00897.
10. Velasco Forte, MN, Byrne, N, Valverde, I, et al. Interventional correction of sinus venosus atrial septal defect and partial anomalous pulmonary venous drainage: procedural planning using 3D printed models. JACC Cardiovasc Imaging 2018;11:275278. doi: 10.1016/j.jcmg.2017.07.010.
11. Sodian, R, Weber, S, Markert, M, et al. Stereolithographic models for surgical planning in congenital heart surgery. Ann Thorac Surg 2007;83:18541857. doi: 10.1016/j.athoracsur.2006.12.004.
12. Sodian, R, Schmauss, D, Schmitz, C, et al. 3-dimensional printing of models to create custom-made devices for coil embolization of an anastomotic leak after aortic arch replacement. Ann Thorac Surg 2009;88:974978. doi: 10.1016/j.athoracsur.2009.03.014.
13. Schmauss, D, Haeberle, S, Hagl, C, Sodian, R. Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience. Eur J Cardiothorac Surg 2015;47:10441052. doi: 10.1093/ejcts/ezu310.
14. Greil, GF, Wolf, I, Kuettner, A, et al. Stereolithographic reproduction of complex cardiac morphology based on high spatial resolution imaging. Clin Res Cardiol 2007;96:176185. doi: 10.1007/s00392-007-0482-3.
15. Mottl-Link, S, Hubler, M, Kuhne, T, et al. Physical models aiding in complex congenital heart surgery. Ann Thorac Surg 2008;86:273277. doi: 10.1016/j.athoracsur9.2007.06.001.
16. Valverde, I, Gomez, G, Coserria, JF, et al. 3D printed models for planning endovascular stenting in transverse aortic arch hypoplasia. Catheter Cardiovasc Interv 2015;85:10061012. doi: 10.1002/ccd.25810.
17. Valverde, I, Gomez, G, Gonzalez, A, et al. Three-dimensional patient-specific cardiac model for surgical planning in Nikaidoh procedure. Cardiol Young 2015;25:698704. doi: 10.1017/S1047951114000742.
18. Byrne, N, Velasco Forte, M, Tandon, A, Valverde, I, Hussain, T. A systematic review of image segmentation methodology, used in the additive manufacture of patient-specific 3D printed models of the cardiovascular system. JRSM Cardiovasc Dis 2016;5:2048004016645467. doi: 10.1177/2048004016645467.
19. Otton, JM, Birbara, NS, Hussain, T, et al. 3D printing from cardiovascular CT: a practical guide and review. Cardiovasc Diagn Ther 2017;7:507526. doi: 10.21037/cdt.2017.01.12.
20. Vukicevic, M, Puperi, DS, Jane Grande-Allen, K, Little, SH. 3D printed modeling of the mitral valve for Catheter-based structural interventions. Ann Biomed Eng 2017;45:508519. doi: 10.1007/s10439-016-1676-5.
21. Scanlan, AB, Nguyen, AV, Ilina, A, et al. Comparison of 3D Echocardiogram-derived 3D printed valve models to molded models for simulated repair of pediatric atrioventricular valves. Pediatr Cardiol 2018;39:538547. doi: 10.1007/s00246-017-1785-4.
22. Gosnell, J, Pietila, T, Samuel, BP, et al. Integration of computed tomography and three-dimensional echocardiography for hybrid three-dimensional printing in congenital heart disease. J Digit Imaging 2016;29:665669. doi: 10.1007/s10278-016-9879-8.
23. Obasare, E, Mainigi, SK, Morris, DL, et al. CT based 3D printing is superior to transesophageal echocardiography for pre-procedure planning in left atrial appendage device closure. Int J Cardiovasc Imaging 2018;34:821831. doi: 10.1007/s10554-017-1289-6.
24. Parimi, M, Buelter, J, Thangundla, V, et al. Feasibility and validity of printing 3D heart models from rotational angiography. Pediatr Cardiol 2018;39:653658. doi: 10.1007/s00246-017-1799-y.
25. Cantinotti, M, Valverde, I, Kutty, S. Three-dimensional printed models in congenital heart disease. Int J Cardiovasc Imaging 2017;33:137144. doi: 10.1007/s10554-016-0981-2.
26. Giannopoulos, AA, Mitsouras, D, Yoo, SJ, et al. Applications of 3D printing in cardiovascular diseases. Nat Rev Cardiol 2016;13:701718. doi: 10.1038/nrcardio.2016.170.
27. Giannopoulos, AA, Steigner, ML, George, E, et al. Cardiothoracic applications of 3-dimensional printing. J Thorac Imaging 2016;31:253272. doi: 10.1097/RTI.0000000000000217.
28. Suarez-Mejias, C, Gomez-Ciriza, G, Valverde, I, Parra Calderon, C, Gomez-Cia, T. New technologies applied to surgical processes: virtual reality and rapid prototyping. Stud Health Technol Inform 2015;210: 669671.
29. Vukicevic, M, Mosadegh, B, Min, JK, Little, SH. Cardiac 3D printing and its future directions. JACC Cardiovasc Imaging 2017;10:171184. doi: 10.1016/j.jcmg.2016.12.001.
30. Valverde, I. Three-dimensional printed cardiac models: applications in the field of medical education, cardiovascular surgery, and structural heart interventions. Rev Esp Cardiol (Engl Ed) 2017;70: 282291. doi: 10.1016/j.rec.2017.01.012.
31. Kim, MS, Hansgen, AR, Carroll, JD. Use of rapid prototyping in the care of patients with structural heart disease. Trends Cardiovasc Med 2008;18:210216. doi: 10.1016/j.tcm.2008.11.001.
32. Kim, MS, Hansgen, AR, Wink, O, Quaife, RA, Carroll, JD. Rapid prototyping: a new tool in understanding and treating structural heart disease. Circulation 2008;117:23882394. doi: 10.1161/CIRCULATIONAHA.107.740977.
33. Ngan, EM, Rebeyka, IM, Ross, DB, et al. The rapid prototyping of anatomic models in pulmonary atresia. J Thorac Cardiovasc Surg 2006;132:264269. doi: 10.1016/j.jtcvs.2006.02.047.
34. Valverde, I, Gomez-Ciriza, G, Hussain, T, et al. Three-dimensional printed models for surgical planning of complex congenital heart defects: an international multicentre study. Eur J Cardiothorac Surg 2017;52:11391148. doi: 10.1093/ejcts/ezx208.
35. Kiraly, L, Tofeig, M, Jha, NK, Talo, H. Three-dimensional printed prototypes refine the anatomy of post-modified Norwood-1 complex aortic arch obstruction and allow presurgical simulation of the repair. Interact Cardiovasc Thorac Surg 2016;22:238240. doi: 10.1093/icvts/ivv320.
36. Shiraishi, I, Yamagishi, M, Hamaoka, K, Fukuzawa, M, Yagihara, T. Simulative operation on congenital heart disease using rubber-like urethane stereolithographic biomodels based on 3D datasets of multislice computed tomography. Eur J Cardiothorac Surg 2010;37:302306. doi: 10.1016/j.ejcts.2009.07.046.
37. Riesenkampff, E, Rietdorf, U, Wolf, I, et al. The practical clinical value of three-dimensional models of complex congenitally malformed hearts. J Thorac Cardiovasc Surg 2009;138:571580. doi: 10.1016/j.jtcvs.2009.03.011.
38. Garekar, S, Bharati, A, Chokhandre, M, et al. Clinical application and multidisciplinary assessment of three dimensional printing in double outlet right ventricle with remote ventricular septal defect. World J Pediatr Congenit Heart Surg 2016;7:344350. doi: 10.1177/2150135116645604.
39. Farooqi, KM, Nielsen, JC, Uppu, SC, et al. Use of 3-dimensional printing to demonstrate complex intracardiac relationships in double-outlet right ventricle for surgical planning. Circ Cardiovasc Imaging 2015;8: e003043. doi: 10.1161/CIRCIMAGING.114.003043.
40. Hermsen, JL, Burke, TM, Seslar, SP, et al. Scan, plan, print, practice, perform: development and use of a patient-specific 3-dimensional printed model in adult cardiac surgery. J Thorac Cardiovasc Surg 2017;153:132140. doi: 10.1016/j.jtcvs.2016.08.007.
41. Yang, DH, Kang, JW, Kim, N, et al. Myocardial 3-dimensional printing for septal myectomy guidance in a patient with obstructive hypertrophic cardiomyopathy. Circulation 2015;132:300301. doi: 10.1161/CIRCULATIONAHA.115.015842.
42. Son, KH, Kim, KW, Ahn, CB, et al. Surgical planning by 3D printing for primary cardiac Schwannoma resection. Yonsei Med J 2015;56:17351737. doi: 10.3349/ymj.2015.56.6.1735.
43. Schmauss, D, Gerber, N, Sodian, R. Three-dimensional printing of models for surgical planning in patients with primary cardiac tumors. J Thorac Cardiovasc Surg 2013;145:14071408. doi: 10.1016/j.jtcvs.2012.12.030.
44. Jacobs, S, Grunert, R, Mohr, FW, Falk, V. 3D-imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study. Interact Cardiovasc Thorac Surg 2008;7:69. doi: 10.1510/icvts.2007.156588.
45. Golesworthy, T, Lamperth, M, Mohiaddin, R, et al. The Tailor of Gloucester: a jacket for the Marfan’s aorta. Lancet 2004;364:1582. doi: 10.1016/S0140-6736(04)17308-X.
46. Pepper, J, Golesworthy, T, Utley, M, et al. Manufacturing and placing a bespoke support for the Marfan aortic root: description of the method and technical results and status at one year for the first ten patients. Interact Cardiovasc Thorac Surg 2010;10:360365. doi: 10.1510/icvts.2009.220319.
47. Treasure, T, Takkenberg, JJ, Golesworthy, T, et al. Personalised external aortic root support (PEARS) in Marfan syndrome: analysis of 1–9 year outcomes by intention-to-treat in a cohort of the first 30 consecutive patients to receive a novel tissue and valve-conserving procedure, compared with the published results of aortic root replacement. Heart 2014;100:969975. doi: 10.1136/heartjnl-2013-304913.
48. Little, SH, Vukicevic, M, Avenatti, E, Ramchandani, M, Barker, CM. 3D printed modeling for patient-specific mitral valve intervention: repair with a clip and a plug. JACC Cardiovasc Interv 2016;9:973975. doi: 10.1016/j.jcin.2016.02.027.
49. Figulla, HR, Webb, JG, Lauten, A, Feldman, T. The transcatheter valve technology pipeline for treatment of adult valvular heart disease. Eur Heart J 2016;37:22262239. doi: 10.1093/eurheartj/ehw153.
50. Ripley, B, Kelil, T, Cheezum, MK, et al. 3D printing based on cardiac CT assists anatomic visualization prior to transcatheter aortic valve replacement. J Cardiovasc Comput Tomogr 2016;10:2836. doi: 10.1016/j.jcct.2015.12.004.
51. Valverde, I, Sarnago, F, Prieto, R, Zunzunegui, JL. Three-dimensional printing in vitro simulation of percutaneous pulmonary valve implantation in large right ventricular outflow tract. Eur Heart J 2017;38:12621263. doi: 10.1093/eurheartj/ehw546.
52. Schievano, S, Migliavacca, F, Coats, L, et al. Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular outflow tract and pulmonary trunk from MR data. Radiology 2007;242:490497. doi: 10.1148/radiol.2422051994.
53. Phillips, AB, Nevin, P, Shah, A, et al. Development of a novel hybrid strategy for transcatheter pulmonary valve placement in patients following transannular patch repair of tetralogy of Fallot. Catheter Cardiovasc Interv 2016;87:403410. doi: 10.1002/ccd.26315.
54. Jivanji, S, Velasco Forte, M, Byrne, N, et al. Complex percutaneous pulmonary venus P valve implantation with simultaneous device closure of RVOT aneurysm. The use of 3D modelling to perform mock intervention to aid in planning. CSI Frankfurt 2018.
55. Biglino, G, Capelli, C, Koniordou, D, et al. Use of 3D models of congenital heart disease as an education tool for cardiac nurses. Congenit Heart Dis 2017;12:113118. doi: 10.1111/chd.12414.
56. Loke, YH, Harahsheh, AS, Krieger, A, Olivieri, LJ. Usage of 3D models of tetralogy of Fallot for medical education: impact on learning congenital heart disease. BMC Med Educ 2017;17:54. doi: 10.1186/s12909-017-0889-0.
57. Yoo, SJ, Spray, T, Austin, EH 3rd, Yun, TJ, van Arsdell, GS. Hands-on surgical training of congenital heart surgery using 3-dimensional print models. J Thorac Cardiovasc Surg 2017;153:15301540. doi: 10.1016/j.jtcvs.2016.12.054.
58. Green, SM, Klein, AJ, Pancholy, S, et al. The current state of medical simulation in interventional cardiology: a clinical document from the Society for Cardiovascular Angiography and Intervention’s (SCAI) Simulation Committee. Catheter Cardiovasc Interv 2014;83:3746. doi: 10.1002/ccd.25048.
59. Gould, DA, Reekers, JA, Kessel, DO, et al. Simulation devices in interventional radiology: validation pending. J Vasc Interv Radiol 2006;17: 215216. doi: 10.1097/01.RVI.0000197480.16245.1A.
60. Costello, JP, Olivieri, LJ, Su, L, et al. Incorporating three-dimensional printing into a simulation-based congenital heart disease and critical care training curriculum for resident physicians. Congenit Heart Dis 2015;10:185190. doi: 10.1111/chd.12238.
61. Jones, TW, Seckeler, MD. Use of 3D models of vascular rings and slings to improve resident education. Congenit Heart Dis 2017;12:578582. doi: 10.1111/chd.12486.
62. Velasco Forte, M. 3D printing for teaching clinicians; summary AEPC junior Grant 2015. In: 51st Annual Meeting of the Association for European Paediatric and Congenital Cardiology (AEPC), Lyon, Cardiology in the Young, 2017.
63. Biglino, G, Capelli, C, Wray, J, et al. 3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: feasibility and acceptability. BMJ Open 2015;5:e007165. doi: 10.1136/bmjopen-2014-007165.
64. Guo, HC, Wang, Y, Dai, J, Ren, CW, Li, JH, Lai, YQ. Application of 3D printing in the surgical planning of hypertrophic obstructive cardiomyopathy and physician-patient communication: a preliminary study. J Thorac Dis 2018;10:867873. doi: 10.21037/jtd.2018.01.55.
65. Biglino, G, Koniordou, D, Gasparini, M, et al. Piloting the use of patient-specific cardiac models as a novel tool to facilitate communication during clinical consultations. Pediatr Cardiol 2017;38:813818. doi: 10.1007/s00246-017-1586-9.


Related content

Powered by UNSILO

Living the heart in three dimensions: applications of 3D printing in CHD

  • Mari Nieves Velasco Forte (a1) (a2) (a3), Tarique Hussain (a4), Arno Roest (a3), Gorka Gomez (a2), Monique Jongbloed (a3), John Simpson (a1) (a5), Kuberan Pushparajah (a1) (a5), Nick Byrne (a1) and Israel Valverde (a1) (a2) (a3)...
  • Please note a correction has been issued for this article.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.

A correction has been issued for this article: