Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-19T17:09:37.613Z Has data issue: false hasContentIssue false

Invasive haemodynamics predict outcomes in paediatric pulmonary artery hypertension

Published online by Cambridge University Press:  04 April 2024

Rupesh Kumar Natarajan
Affiliation:
Division of Pediatric Cardiology, University of Minnesota, Minneapolis, MN, USA
Nathan Rodgers
Affiliation:
Division of Pediatric Cardiology, University of Minnesota, Minneapolis, MN, USA
Shanti Narasimhan
Affiliation:
Division of Pediatric Cardiology, University of Minnesota, Minneapolis, MN, USA
Matthew Ambrose
Affiliation:
Division of Pediatric Cardiology, University of Minnesota, Minneapolis, MN, USA
Abraham Rothman
Affiliation:
Children’s Heart Center of Nevada, UNLV School of Medicine, Las Vegas, NV, USA
Michael Shyne
Affiliation:
Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN, USA
Michael Evans
Affiliation:
Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN, USA
Varun Aggarwal*
Affiliation:
Division of Pediatric Cardiology, University of Minnesota, Minneapolis, MN, USA
*
Corresponding author: Varun Aggarwal; Email: aggar134@umn.edu

Abstract

Background:

Invasive haemodynamics are often performed for initiating and guiding pulmonary artery hypertension therapy. Little is known about the predictive value of invasive haemodynamic indices for long-term outcomes in children with pulmonary artery hypertension. We aimed to evaluate invasive haemodynamic data to help predict outcomes in paediatric pulmonary artery hypertension.

Methods:

Patients with pulmonary artery hypertension who underwent cardiac catheterisation (2006–2019) at a single centre were included. Invasive haemodynamic data from the first cardiac catheterisation and clinical outcomes were reviewed. The combined adverse outcome was defined as pericardial effusion (due to right ventricle failure), creation of a shunt for pulmonary artery hypertension (atrial septal defect or reverse Pott’s shunt), lung transplant, or death.

Results:

Among 46 patients with a median [interquartile range (IQR)] age of 13.2 [4.1–44.7] months, 76% had CHD. Median mean pulmonary artery pressure was 37 [28–52] mmHg and indexed pulmonary vascular resistance was 6.2 [3.6–10] Woods units × m2. Median pulmonary artery pulsatility index was 4.0 [3.0–4.7] and right ventricular stroke work index was 915 [715–1734] mmHg mL/m2. After a median follow-up of 2.4 years, nine patients had a combined adverse outcome (two had a pericardial effusion, one underwent atrial level shunt, one underwent reverse Pott’s shunt, and six died). Patients with an adverse outcome had higher systolic and mean pulmonary artery pressures, higher diastolic and transpulmonary pressure gradients, higher indexed pulmonary vascular resistance, higher pulmonary artery elastance, and higher right ventricular stroke work index (p < 0.05 each).

Conclusion:

Invasive haemodynamics (especially mean pulmonary artery pressure and diastolic pressure gradient) obtained at first cardiac catheterisation in children with pulmonary artery hypertension predicts outcomes.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Li, L, Jick, S, Breitenstein, S, Hernandez, G, Michel, A, Vizcaya, D. Pulmonary arterial hypertension in the USA: an epidemiological study in a large insured pediatric population. Pulm Circ 2017; 7: 126136. DOI: 10.1086/690007.CrossRefGoogle Scholar
van Loon, RLE, Roofthooft, MTR, Hillege, HL, et al. Pediatric pulmonary hypertension in the Netherlands: epidemiology and characterization during the period 1991 to 2005. Circulation 2011; 124: 17551764. DOI: 10.1161/CIRCULATIONAHA.110.969584.CrossRefGoogle ScholarPubMed
Barst, RJ, McGoon, MD, Elliott, CG, Foreman, AJ, Miller, DP, Ivy, DD. Survival in childhood pulmonary arterial hypertension. Circulation 2012; 125: 113122. DOI: 10.1161/CIRCULATIONAHA.111.026591.CrossRefGoogle ScholarPubMed
Morell, E, Gaies, M, Fineman, JR, et al. Mortality from pulmonary hypertension in the pediatric cardiac ICU. Am J Respir Crit Care Med 2021; 204: 454461. DOI: 10.1164/RCCM.202011-4183OC.CrossRefGoogle ScholarPubMed
Sitbon, O, Channick, R, Chin, KM, et al. Selexipag for the treatment of pulmonary arterial hypertension. N Engl J Med 2015; 373: 25222533. DOI: 10.1056/NEJMoa1503184.CrossRefGoogle ScholarPubMed
Pulido, T, Adzerikho, I, Channick, RN, et al. Macitentan and morbidity and mortality in pulmonary arterial hypertension. N Engl J Med 2013; 369: 809818. DOI: 10.1056/NEJMOA1213917/SUPPL_FILE/NEJMOA1213917_DISCLOSURES.PDF.CrossRefGoogle ScholarPubMed
Galiè, N, Barberà, JA, Frost, AE, et al. Initial use of Ambrisentan plus Tadalafil in pulmonary arterial hypertension. N Engl J Med 2015; 373: 834844. DOI: 10.1056/NEJMoa1413687.CrossRefGoogle ScholarPubMed
Beghetti, M, Brand, M, Berger, RMF, et al. Meaningful and feasible composite clinical worsening definitions in paediatric pulmonary arterial hypertension: an analysis of the TOPP registry. Int J Cardiol 2019; 289: 110115. DOI: 10.1016/j.ijcard.2019.04.062.CrossRefGoogle ScholarPubMed
Moledina, S, Hislop, AA, Foster, H, Schulze-Neick, I, Haworth, SG. Childhood idiopathic pulmonary arterial hypertension: a national cohort study. Heart 2010; 96: 14011406. DOI: 10.1136/hrt.2009.182378.CrossRefGoogle ScholarPubMed
van Loon, RLE, Roofthooft, MTR, Delhaas, T, et al. Outcome of pediatric patients with pulmonary arterial hypertension in the era of new medical therapies. Am J Cardiol 2010; 106: 117124. DOI: 10.1016/j.amjcard.2010.02.023.CrossRefGoogle ScholarPubMed
Bernus, A, Wagner, BD, Accurso, F, Doran, A, Kaess, H, Ivy, DD. Brain natriuretic peptide levels in managing pediatric patients with pulmonary arterial hypertension. Chest 2009; 135: 745751. DOI: 10.1378/CHEST.08-0187.CrossRefGoogle ScholarPubMed
Lammers, AE, Hislop, AA, Haworth, SG. Prognostic value of B-type natriuretic peptide in children with pulmonary hypertension. Int J Cardiol 2009; 135: 2126. DOI: 10.1016/J.IJCARD.2008.03.009.CrossRefGoogle ScholarPubMed
van Albada, ME, Loot, FG, Fokkema, R, Roofthooft, MTR, Berger, RMF. Biological serum markers in the management of pediatric pulmonary arterial hypertension. Pediatr Res 2008; 63: 3327. DOI: 10.1203/pdr.0b013e318163a2e7.CrossRefGoogle ScholarPubMed
Wronski, SL, Mordin, M, Kelley, K, et al. The role of noninvasive endpoints in predicting long-term outcomes in pulmonary arterial hypertension. Lung 2020; 198: 6586. DOI: 10.1007/S00408-019-00289-2.CrossRefGoogle ScholarPubMed
Berger, RMF, Beghetti, M, Humpl, T, et al. Clinical features of paediatric pulmonary hypertension: a registry study. Lancet 2012; 379: 537546. DOI: 10.1016/S0140-6736(11)61621-8.CrossRefGoogle ScholarPubMed
Takatsuki, S, Dunbar Ivy, D. Current challenges in pediatric pulmonary hypertension nih public access. Semin Respir Crit Care Med 2013; 34: 627644. DOI: 10.1055/s-0033-1356461.CrossRefGoogle Scholar
Ivy, DD, Rosenzweig, EB, Lemari, JC, Brand, M, Rosenberg, D, Barst, RJ. Long-term outcomes in children with pulmonary arterial hypertension treated with Bosentan in real-world clinical settings. Am J Cardiol 2010; 106: 13321338. DOI: 10.1016/J.AMJCARD.2010.06.064.CrossRefGoogle ScholarPubMed
Douwes, JM, van Loon, RLE, Hoendermis, ES, et al. Acute pulmonary vasodilator response in paediatric and adult pulmonary arterial hypertension: occurrence and prognostic value when comparing three response criteria. Eur Heart J 2011; 32: 31373146. DOI: 10.1093/EURHEARTJ/EHR282.CrossRefGoogle ScholarPubMed
Simonneau, G, Robbins, IM, Beghetti, M, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 2009; 54: S43S54. DOI: 10.1016/j.jacc.2009.04.012.CrossRefGoogle ScholarPubMed
da Rocha, EEM, Alves Véria, GF, da Fonseca, RBV. Indirect calorimetry: methodology, instruments and clinical application. Curr Opin Clin Nutr Metab Care 2006; 9: 247256. DOI: 10.1097/01.mco.0000222107.15548.f5.CrossRefGoogle ScholarPubMed
Black, C, Grocott, MPW, Singer, M. Metabolic monitoring in the intensive care unit: a comparison of the Medgraphics Ultima, Deltatrac II, and Douglas bag collection methods. Br J Anaesth 2015; 114: 261268. DOI: 10.1093/bja/aeu365.CrossRefGoogle ScholarPubMed
LaFarge, CG, Miettinen, OS. The estimation of oxygen consumption. Cardiovasc Res 1970; 4: 2330. DOI: 10.1093/cvr/4.1.23.CrossRefGoogle ScholarPubMed
Fagard, R, Conway, J. Measurement of cardiac output: Fick principle using catheterization. Eur Heart J 1990; 11: 15. DOI: 10.1093/eurheartj/11.suppl_I.1.CrossRefGoogle ScholarPubMed
Manohar, M, Goetz, TE. Pulmonary vascular resistance of horses decreases with moderate exercise and remains unchanged as workload is increased to maximal exercise. Equine Vet J 1999; 117121. https://pubmed.ncbi.nlm.nih.gov/32119267/.CrossRefGoogle ScholarPubMed
Thenappan, T, Prins, KW, Pritzker, MR, Scandurra, J, Volmers, K, Weir, EK. The critical role of pulmonary arterial compliance in pulmonary hypertension. Ann Am Thorac Soc 2016; 13. DOI: 10.1513/AnnalsATS.201509-599FR.CrossRefGoogle ScholarPubMed
Mahapatra, S, Nishimura, RA, Sorajja, P, Cha, S, McGoon, MD. Relationship of pulmonary arterial capacitance and mortality in idiopathic pulmonary arterial hypertension. J Am Coll Cardiol 2006; 47: 799803. DOI: 10.1016/J.JACC.2005.09.054.CrossRefGoogle ScholarPubMed
Ibe, T, Wada, H, Sakakura, K, et al. Right ventricular stroke work index. Int Heart J 2018; 59: 10471051. DOI: 10.1536/ihj.17-576.CrossRefGoogle ScholarPubMed
Di Maria, MV, Younoszai, AK, Mertens, L, Landeck, BF, Ivy, D D, Hunter, KS, Friedberg, MK. RV stroke work in children with pulmonary arterial hypertension: estimation based on invasive haemodynamic assessment and correlation with outcomes. Heart 2014; 100: 13421347. DOI: 10.1136/heartjnl-2013-305298.CrossRefGoogle ScholarPubMed
Silber, D, Lachmann, J. Invasive hemodynamics of pulmonary disease and the right ventricle. Interv Cardiol Clin 2017; 6: 329343. DOI: 10.1016/j.iccl.2017.03.004.Google ScholarPubMed
Aggarwal, V, Tume, SC, Rodriguez, M, et al. Pulmonary artery pulsatility index predicts prolonged inotrope/pulmonary vasodilator use after implantation of continuous flow left ventricular assist device. Congenit Heart Dis 2019; 14: 11301137. DOI: 10.1111/chd.12860.CrossRefGoogle ScholarPubMed
Abman, SH, Mullen, MP, Sleeper, LA, et al. Characterisation of paediatric pulmonary hypertensive vascular disease from the PPHNet Registry. Eur Respir J 2022; 59: 2003337. DOI: 10.1183/13993003.03337-2020.CrossRefGoogle ScholarPubMed
Barst, RJ, Ivy, DD, Foreman, AJ, McGoon, MD, Rosenzweig, EB. Four- and seven-year outcomes of patients with congenital heart disease-associated pulmonary arterial hypertension (from the REVEAL Registry). Am J Cardiol 2014; 113: 147155. DOI: 10.1016/j.amjcard.2013.09.032.CrossRefGoogle ScholarPubMed
Lankhaar, JW, Westerhof, N, Faes, TJC, et al. Quantification of right ventricular afterload in patients with and without pulmonary hypertension. Am J Physiol Heart Circ Physiol 2006; 291: H1731H1737. DOI: 10.1152/AJPHEART.00336.2006.CrossRefGoogle ScholarPubMed
Ploegstra, MJ, Zijlstra, WMH, Douwes, JM, Hillege, HL, Berger, RMF. Prognostic factors in pediatric pulmonary arterial hypertension: a systematic review and meta-analysis. Int J Cardiol 2015; 184: 198207. DOI: 10.1016/j.ijcard.2015.01.038.CrossRefGoogle ScholarPubMed
Barst, RJ, Maislin, G, Fishman, AP. Vasodilator therapy for primary pulmonary hypertension in children. Circulation 1999; 99: 11971208. DOI: 10.1161/01.CIR.99.9.1197.CrossRefGoogle ScholarPubMed
Clabby, ML, Canter, CE, Moller, JH, Bridges, ND. Hemodynamic data and survival in children with pulmonary hypertension. J Am Coll Cardiol 1997; 30: 554560. DOI: 10.1016/S0735-1097(97)00155-1.CrossRefGoogle ScholarPubMed
Wagner, BD, Takatsuki, S, Accurso, FJ, Ivy, DD. Evaluation of circulating proteins and hemodynamics towards predicting mortality in children with pulmonary arterial hypertension. In: Kuwana, M (ed). PLoS One. vol. 8, 2013: e80235, DOI: 10.1371/journal.pone.0080235.Google Scholar
Evers, PD, Quinn, P, Critser, PJ, Frank, BS, Alnoor, M, Armsby, LB. Prognostic value of longitudinal vasoreactivity in pediatric pulmonary hypertension. Pulm Circ 2022; 12: e12152. DOI: 10.1002/pul2.12152.CrossRefGoogle ScholarPubMed
Mazimba, S, Mejia-Lopez, E, Black, G, et al. Diastolic pulmonary gradient predicts outcomes in group 1 pulmonary hypertension (analysis of the NIH primary pulmonary hypertension registry). Respir Med 2016; 119: 8186. DOI: 10.1016/j.rmed.2016.08.024.CrossRefGoogle ScholarPubMed
Simonneau, G, Montani, D, Celermajer, DS, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 2019; 53: 1801913. DOI: 10.1183/13993003.01913-2018.CrossRefGoogle ScholarPubMed
Douwes, JM, Roofthooft, MTR, Bartelds, B, Talsma, MD, Hillege, HL, Berger, RMF. Pulsatile haemodynamic parameters are predictors of survival in paediatric pulmonary arterial hypertension. Int J Cardiol 2013; 168: 13701377. DOI: 10.1016/j.ijcard.2012.12.080.CrossRefGoogle ScholarPubMed
Sajan, I, Manlhiot, C, Reyes, J, McCrindle, BW, Humpl, T, Friedberg, MK. Pulmonary arterial capacitance in children with idiopathic pulmonary arterial hypertension and pulmonary arterial hypertension associated with congenital heart disease: relation to pulmonary vascular resistance, exercise capacity, and survival. Am Heart J 2011; 162: 562568. DOI: 10.1016/j.ahj.2011.06.014.CrossRefGoogle ScholarPubMed
van Wolferen, SA, Marcus, JT, Boonstra, A, et al. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J 2007; 28: 12501257. DOI: 10.1093/eurheartj/ehl477.CrossRefGoogle ScholarPubMed
D’Alonzo, GE. Survival in patients with primary pulmonary hypertension. Ann Intern Med 1991; 115: 343349. DOI: 10.7326/0003-4819-115-5-343.CrossRefGoogle ScholarPubMed
Di Maria, MV, Burkett, DA, Younoszai, AK, Landeck, BF, et al. Echocardiographic estimation of right ventricular stroke work in children with pulmonary arterial hypertension: comparison with invasive measurements. J Am Soc Echocardiogr 2015; 28: 13501357. DOI: 10.1016/j.echo.2015.07.017.CrossRefGoogle ScholarPubMed
Mirza, S, Khalif, A, Khodjaev, S, et al. Echocardiographic estimation of pulmonary artery pulsatility index in pulmonary hypertension. J Heart Lung Transpl 2019; 38: S492. DOI: 10.1016/j.healun.2019.01.1252.CrossRefGoogle Scholar
Korabathina, R, Heffernan, KS, Paruchuri, V, et al. The pulmonary artery pulsatility index identifies severe right ventricular dysfunction in acute inferior myocardial infarction. Catheter Cardiovasc Interv 2012; 80: 593600. DOI: 10.1002/ccd.23309.CrossRefGoogle ScholarPubMed
Morine, KJ, Kiernan, MS, Pham, DT, Paruchuri, V, Denofrio, D, Kapur, NK. Pulmonary artery pulsatility index is associated with right ventricular failure after left ventricular assist device surgery. J Card Fail 2016; 22: 110116. DOI: 10.1016/j.cardfail.2015.10.019.CrossRefGoogle ScholarPubMed
Kang, G, Ha, R, Banerjee, D. Pulmonary artery pulsatility index predicts right ventricular failure after left ventricular assist device implantation. J Heart Lung Transpl 2016; 35: 6773. DOI: 10.1016/j.healun.2015.06.009.CrossRefGoogle ScholarPubMed
Mazimba, S, Welch, TS, Mwansa, H, et al. Haemodynamically derived pulmonary artery pulsatility index predicts mortality in pulmonary arterial hypertension. Heart Lung Circ 2019; 28: 752760. DOI: 10.1016/j.hlc.2018.04.280.CrossRefGoogle ScholarPubMed
Welch, TS, Bilchick, KC, Kennedy, JLW, et al. Hemodynamically derived pulmonary artery pulsatility index predicts adverse clinical outcomes in group 1 pulmonary hypertension. (Analysis of the NIH Pulmonary Hypertension Registry). J Card Fail 2016; 22: S3S4. DOI: 10.1016/j.cardfail.2016.06.022.CrossRefGoogle Scholar
Supplementary material: File

Natarajan et al. supplementary material 1

Natarajan et al. supplementary material
Download Natarajan et al. supplementary material 1(File)
File 17.8 KB
Supplementary material: File

Natarajan et al. supplementary material 2

Natarajan et al. supplementary material
Download Natarajan et al. supplementary material 2(File)
File 19.3 KB