Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-05-01T07:51:37.024Z Has data issue: false hasContentIssue false

Individualised surgical treatment strategy for subaortic stenosis

Published online by Cambridge University Press:  08 April 2024

Zhangwei Wang
Affiliation:
Department of Cardiovascular Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Fuwai Hospital, Beijing, China
Kai Ma
Affiliation:
Department of Cardiovascular Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Fuwai Hospital, Beijing, China
Yaobin Zhu
Affiliation:
Department of Cardiac Surgery, Beijing Children’s Hospital, Capital Medical University, National Children’s Medical Center, Beijing, China
Zhiqiang Li
Affiliation:
Department of Cardiac Surgery, Beijing Children’s Hospital, Capital Medical University, National Children’s Medical Center, Beijing, China
Shoujun Li*
Affiliation:
Department of Cardiovascular Surgery, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Fuwai Hospital, Beijing, China
*
Corresponding author: S. Li; Email: drlishoujunfw@163.com

Abstract

Objectives:

The clinical data of patients with subaortic stenosis who underwent surgical treatment in our centre in the past 12 years were reviewed. The short-term and long-term clinical outcomes were analyzed, and the long-term outcomes of different surgical methods for subaortic stenosis were compared to determine the optimal surgical treatment strategy for subaortic stenosis.

Methods:

From December 2010 to December 2022, 90 patients undergoing surgical treatment for subaortic stenosis in our hospital were enrolled. There were 55 males and 35 females with a median age of 72 (46,132) months and an average surgical weight of (21.35 ± 15.84) kg. According to the operation method, 90 patients were divided into group A (50 patients with simple subaortic membrane resection) and group B (40 patients with subaortic membrane and muscle resection or modified Konno procedure).

Results:

There were three early deaths (3.33%). One late death occurred in group B. There was no significant difference in long-term survival rate between the two groups (p = 0.904). The preoperative left ventricular outflow tract pressure gradient in group B was (91.56 ± 36.98) mm Hg, which was higher than that in group A(51.13 ± 36.04)mm Hg(p < 0.001). There was no significant difference in immediate postoperative left ventricular outflow tract pressure gradient between group B [(5.44 ± 8.43) mm Hg] and group A [(7.82 ± 13.44) mm Hg] (p = 0.343). In the long-term follow-up, left ventricular outflow tract pressure gradient in group B was (5.86 ± 9.53) mm Hg, which was not statistically significant compared with group A (8.83 ± 14.52) mm Hg (p = 0.294). Eleven patients with moderate or greater aortic regurgitation (group A/group B: 3/8) underwent simultaneous aortic valvuloplasty. In group B, moderate or greater aortic regurgitation was significantly improved immediately after operation (p = 0.013) and was not significantly aggravated in long-term follow-up (p = 0.083), and there was no significant improvement in group A after operation and long-term follow-up.

Conclusions:

According to the different anatomical lesions of left ventricular outflow tract, the individualised surgical treatment strategy for patients with subaortic stenosis can achieve good long-term outcomes. The long-term survival rate and freedom from reoperation due to late left ventricular outflow tract obstruction after simple subaortic membrane resection and extended left ventricular outflow tract resection are comparable. For patients with moderate or greater aortic regurgitation before extended left ventricular outflow tract resection, simultaneous aortic valvuloplasty is beneficial to improve postoperative aortic valve function.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benqing, Z, Kai, M, Sen, Z, Jun, Y, Zhongdong, H, Shoujun, L. Mid- and long-term results of different techniques for subaortic stenosis. Chin J Clin Thorac Cardiovasc Surg 2022; 29: 233237.Google Scholar
Laredo, M, Khraiche, D, Raisky, O, et al. Long-term results of the modified Konno procedure in high-risk children with obstructive hypertrophic cardiomyopathy. J Thorac Cardiov Sur 2018; 156: 22852294.CrossRefGoogle ScholarPubMed
Pickard, SS, Geva, A, Gauvreau, K, Del, NP, Geva, T. Long-term outcomes and risk factors for aortic regurgitation after discrete subvalvular aortic stenosis resection in children. Heart 2015; 101: 15471553.CrossRefGoogle ScholarPubMed
Liu, H, Gao, B, Sun, Q, et al. Surgical strategies and outcomes of congenital supravalvular aortic stenosis. J Cardiac Surg 2017; 32: 652658.CrossRefGoogle ScholarPubMed
Laguna, G, Blanco, M, Carrascal, Y. Subaortic stenosis by accessory mitral tissue: failure of embryonic positioning? J Thorac Cardiov Sur 2018; 156: 777779.CrossRefGoogle ScholarPubMed
Parry, AJ, Kovalchin, JP, Suda, K, et al. Resection of subaortic stenosis; can a more aggressive approach be justified? EUR J CARDIO-THORAC 1999; 15: 631638.CrossRefGoogle ScholarPubMed
Shuo, DONG, Jun, YAN, Shoujun, LI. Chinese expert consensus on the surgical treatment of congenital heart diseases (9): subvalvar aortic stenosis. Chin J Clin Thorac Cardiovasc Surg 2020; 27: 11131118.Google Scholar
Geva, A, McMahon, CJ, Gauvreau, K, Mohammed, L, Del, NP, Geva, T. Risk factors for reoperation after repair of discrete subaortic stenosis in children. J Am Coll Cardiol 2007; 50: 14981504.CrossRefGoogle ScholarPubMed
Donald, JS, Naimo, PS, D'Udekem, Y, et al. Outcomes of subaortic obstruction resection in children. Heart Lung Circ 2017; 26: 179186.CrossRefGoogle ScholarPubMed
de Agustin, JA, Rodrigo, JL, Marcos-Alberca, P, et al. Subaortic membrane coexisting with systolic anterior motion of the mitral valve. Int J Cardiol 2015; 185: 157158.CrossRefGoogle ScholarPubMed
Dorobantu, DM, Sharabiani, MT, Martin, RP, et al. Surgery for simple and complex subaortic stenosis in children and young adults: results from a prospective, procedure-based national database. J Thorac Cardiov Sur 2014; 148: 26182626.CrossRefGoogle Scholar
Mashari, A, Mahmood, F. Fixed versus dynamic left ventricular outflow tract obstruction: res ipsa loquitur. J Thorac Cardiov Sur 2016; 151: 885886.CrossRefGoogle ScholarPubMed
Dearani, JA. Modified Konno instead of myectomy: another tool in the box? J Thorac Cardiov Sur 2018; 156: 22952296.CrossRefGoogle ScholarPubMed
Sarioglu, T, Arnaz, A, Saygili, A. Accessory miniature mitral valve causing subaortic obstruction. Ann Thorac Surg 2015; 99: 18681869.CrossRefGoogle ScholarPubMed
Stauber, A, Wey, C, Greutmann, M, et al. Left ventricular outflow tract obstruction and its impact on systolic ventricular function and exercise capacity in adults with a subaortic right ventricle. Int J Cardiol 2017; 244: 139142.CrossRefGoogle ScholarPubMed
Valeske, K, Yerebakan, C, Mueller, M, Akintuerk, H. Urgent implantation of the Berlin heart excor biventricular assist device as a total artificial heart in a patient with single ventricle circulation. J Thorac Cardiov Sur 2014; 147: 17121714.CrossRefGoogle Scholar
Tanaka, Y, Miyamoto, T, Minami, K, Miyaji, K. Useful surgical instruments for the resection of subaortic stenosis. J Thorac Cardiov Sur 2015; 150: 421422.CrossRefGoogle ScholarPubMed
Backer, CL, Eltayeb, O, Monge, MC, et al. Modified single patch: are we still worried about subaortic stenosis? Ann Thorac Surg 2015; 99: 16711676.CrossRefGoogle ScholarPubMed