Skip to main content Accessibility help
×
Home

The importance of nomenclature for congenital cardiac disease: implications for research and evaluation

  • Matthew J. Strickland (a1) (a2), Tiffany J. Riehle-Colarusso (a1), Jeffrey P. Jacobs (a3), Mark D. Reller (a4), William T. Mahle (a5), Lorenzo D. Botto (a6), Paige E. Tolbert (a2), Marshall L. Jacobs (a7), Francois G. Lacour-Gayet (a8), Christo I. Tchervenkov (a9), Constantine Mavroudis (a10) and Adolfo Correa (a1)...

Abstract

Background

Administrative databases are often used for congenital cardiac disease research and evaluation, with little validation of the accuracy of the diagnostic codes.

Methods

Metropolitan Atlanta Congenital Defects Program surveillance records were reviewed and classified using a version of the International Pediatric and Congenital Cardiac Code. Using this clinical nomenclature as the referent, we report the sensitivity and false positive fraction (1 – positive predictive value) of the International Classification of Diseases, Ninth Revision, Clinical Modification diagnosis codes for tetralogy of Fallot, transposition of the great arteries, and hypoplastic left heart syndrome.

Results

We identified 4918 infants and foetuses with congenital cardiac disease from the surveillance records. Using only the International Classification of Diseases diagnosis codes, there were 280 records with tetralogy, 317 records with transposition, and 192 records with hypoplastic left heart syndrome. Based on the International Pediatric and Congenital Cardiac Code, 330 records were classified as tetralogy, 163 records as transposition, and 179 records as hypoplastic left heart syndrome. The sensitivity of International Classification of Diseases diagnosis codes was 83% for tetralogy, 100% for transposition, and 95% for hypoplastic left heart syndrome. The false positive fraction was 2% for tetralogy, 49% for transposition, and 11% for hypoplastic left heart syndrome.

Conclusions

Analyses based on International Classification of Diseases diagnosis codes may have substantial misclassification of congenital heart disease. Isolating the major defect is difficult, and certain codes do not differentiate between variants that are clinically and developmentally different.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The importance of nomenclature for congenital cardiac disease: implications for research and evaluation
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The importance of nomenclature for congenital cardiac disease: implications for research and evaluation
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The importance of nomenclature for congenital cardiac disease: implications for research and evaluation
      Available formats
      ×

Copyright

Corresponding author

Correspondence to: Matthew J. Strickland, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Mailstop E-86 Atlanta, GA 30333, United States of America. Tel: 404-421-3183; Fax: 404-498-3040; E-mail: MStrickland@cdc.gov

References

Hide All
1.Berry, JG, Cowley, CG, Hoff, CJ, Srivastava, R. In-hospital mortality for children with hypoplastic left heart syndrome after stage I surgical palliation: teaching versus nonteaching hospitals. Pediatrics 2006; 117: 13071313.
2.Berry, JG, Lieu, TA, Forbes, PW, Goldmann, DA. Hospital volumes for common pediatric specialty operations. Arch Pediatr Adolesc Med 2007; 161: 3843.
3.Centers for Disease Control and Prevention. Hospital stays, hospital charges, and in-hospital deaths among infants with selected birth defects--United States, 2003. MMWR Morb Mortal Wkly Rep 2007; 56: 2529.
4.Benavidez, OJ, Gauvreau, K, Jenkins, KJ. Racial and ethnic disparities in mortality following congenital heart surgery. Pediatr Cardiol 2006; 27: 321328.
5.Connor, JA, Gauvreau, K, Jenkins, KJ. Factors associated with increased resource utilization for congenital heart disease. Pediatrics 2005; 116: 689695.
6.Chang, RK, Rodriguez, S, Lee, M, Klitzner, TS. Risk factors for deaths occurring within 30 days and 1 year after hospital discharge for cardiac surgery among pediatric patients. Am Heart J 2006; 152: 386393.
7.Marelli, AJ, Mackie, AS, Ionescu-Ittu, R, Rahme, E, Pilote, L. Congenital heart disease in the general population: changing prevalence and age distribution. Circulation 2007; 115: 163172.
8.Gurvitz, MZ, Inkelas, M, Lee, M, Stout, K, Escarce, J, Chang, RK. Changes in hospitalization patterns among patients with congenital heart disease during the transition from adolescence to adulthood. J Am Coll Cardiol 2007; 49: 875882.
9. World Health Organization International Classification of Diseases, Ninth Revision, Clinical Modification. Available at: http://www.cdc.gov/nchs/about/otheract/icd9/abticd9.htm. Accessed March 13, 2007.
10.Cronk, CE, Malloy, ME, Pelech, AN, et al. Completeness of state administrative databases for surveillance of congenital heart disease. Birth Defects Res A Clin Mol Teratol 2003; 67: 597603.
11.Frohnert, BK, Lussky, RC, Alms, MA, Mendelsohn, NJ, Symonik, DM, Falken, MC. Validity of hospital discharge data for identifying infants with cardiac defects. J Perinatol 2005; 25: 737742.
12.Mavroudis, C, Jacobs, JP. Congenital Heart Surgery Nomenclature and Database Project: overview and minimum dataset. Ann Thorac Surg 2000; 69 (Suppl 4): S217.
13.Beland, MJ, Franklin, RC, Jacobs, JP, et al. Update from the International Working Group for Mapping and Coding of Nomenclatures for Paediatric and Congenital Heart Disease. Cardiol Young 2004; 14: 225229.
14. International Pediatric and Congenital Cardiac Code. Available at: http://www.ipccc.net. Accessed March 13, 2007.
15. Society of Thoracic Surgeons Congenital Heart Surgery Database v2.50. Available at: http://www.sts.org/sections/stsnationaldatabase/datamanagers/congenitalheartsurgerydb/datacollection/index.html. Accessed March 13, 2007.
16.Jacobs, JP, Mavroudis, C, Jacobs, ML, et al. Lessons learned from the data analysis of the second harvest (1998–2001) of the Society of Thoracic Surgeons (STS) Congenital Heart Surgery Database. Eur J Cardiothorac Surg 2004; 26: 1837.
17.Jacobs, JP, Lacour-Gayet, FG, Jacobs, ML, et al. Initial application in the STS congenital database of complexity adjustment to evaluate surgical case mix and results. Ann Thorac Surg 2005; 79: 16351649.
18.Jacobs, JP, Jacobs, ML, Maruszewski, B, et al. Current status of the European Association for Cardio-Thoracic Surgery and the Society of Thoracic Surgeons Congenital Heart Surgery Database. Ann Thorac Surg 2005; 80: 22782283.
19.Correa, A, Cragan, JD, Kucik, JE, et al. Metropolitan Atlanta Congenital Defects Report: 40th Anniversary Edition Surveillance Report. Birth Defects Res A Clin Mol Teratol 2007; 79: 65186.
20. Centers for Disease Control and Prevention Metropolitan Atlanta Congenital Defects Program Defect Code List. Available at: http://www.cdc.gov/ncbddd/bd/macdp_resources.htm. Accessed March 13, 2007.
21.British Paediatric Association. British Paediatric Association Classification of Diseases. British Paediatric Association, London, 1979.
22. Society of Thoracic Surgeons Congenital Heart Surgery Database v2.30. Available at: http://www.sts.org/sections/stsnationaldatabase/datamanagers/congenitalheartsurgerydb/datacollection/index.html. Accessed March 13, 2007.
23.Ferencz, C, Loffredo, CA, Correa-Villaseñor, A, Wilson, PD. Genetic and Environmental Risk Factors of Major Cardiovascular Malformations: The Baltimore-Washington Infant Study 1981–1989. Futura Publishing Company, Armonk, NY, 1997.
24.Clark, EB. Etiology of congenital cardiovascular malformations: Epidemiology and genetics. In: Allen, HD, Gutgesell, HP, Clark, EB, Driscoll, DJ (eds). Moss and Adams’ Heart Disease in Infants, Children, and Adolescents, 6th ed.Lippincott Williams & Wilkins, Philadelphia, PA, 2001, pp 6479.
25.Stark, J, Gallivan, S, Lovegrove, J, et al. Mortality rates after surgery for congenital heart defects in children and surgeons. Lancet 2000; 355: 10041007.
26.Stark, JF, Gallivan, S, Davis, K, et al. Assessment of mortality rates for congenital heart defects and surgeons’ performance. Ann Thorac Surg 2001; 72: 169174.
27. Jacobs JP, Jacobs ML, Mavroudis C, Lacour-Gayet FG. Executive Summary: The Society of Thoracic Surgeons Congenital Heart Surgery Database - Second Harvest – (1998–2001) Beta Site Test. The Society of Thoracic Surgeons (STS) and Duke Clinical Research Institute (DCRI), Duke University Medical Center, Durham, North Carolina, United States, Fall 2002 Harvest.
28. Jacobs JP, Jacobs ML, Mavroudis C, Lacour-Gayet FG. Executive Summary: The Society of Thoracic Surgeons Congenital Heart Surgery Database - Third Harvest – (1998–2002). The Society of Thoracic Surgeons (STS) and Duke Clinical Research Institute (DCRI), Duke University Medical Center, Durham, North Carolina, United States, Spring 2003 Harvest.
29. Jacobs JP, Jacobs ML, Mavroudis C, Lacour-Gayet FG. Executive Summary: The Society of Thoracic Surgeons Congenital Heart Surgery Database - Fourth Harvest – (2002-2003). The Society of Thoracic Surgeons (STS) and Duke Clinical Research Institute (DCRI), Duke University Medical Center, Durham, North Carolina, United States, Spring 2004 Harvest.
30. Jacobs JP, Jacobs ML, Mavroudis C, Lacour-Gayet FG. Executive Summary: The Society of Thoracic Surgeons Congenital Heart Surgery Database - Fifth Harvest – (2002–2004). The Society of Thoracic Surgeons (STS) and Duke Clinical Research Institute (DCRI), Duke University Medical Center, Durham, North Carolina, United States, Spring 2005 Harvest.
31. Jacobs JP, Jacobs ML, Mavroudis C, Lacour-Gayet FG, Tchervenkov CI. Executive Summary: The Society of Thoracic Surgeons Congenital Heart Surgery Database - Sixth Harvest – (2002-2005). The Society of Thoracic Surgeons (STS) and Duke Clinical Research Institute (DCRI), Duke University Medical Center, Durham, North Carolina, United States, Spring 2006 Harvest.
32.Brown, JW, Ruzmetov, M, Okada, Y, Vijay, P, Turrentine, MW. Surgical results in patients with double outlet right ventricle: a 20-year experience. Ann Thorac Surg 2001; 72: 16301635.
33.Takeuchi, K, McGowan, FX Jr, et al. Analysis of surgical outcome in complex double-outlet right ventricle with heterotaxy syndrome or complete atrioventricular canal defect. Ann Thorac Surg 2006; 82: 146152.
34.Cohen, MS, Schultz, AH, Tian, ZY, et al. Heterotaxy syndrome with functional single ventricle: does prenatal diagnosis improve survival? Ann Thorac Surg 2006; 82: 16291636.
35. American Medical Association Current Procedural Terminology. Available at: http://www.ama-assn.org/ama/pub/category/3113.html. Accessed March 13, 2007.
36.Steiner, C, Elixhauser, A, Schnaier, J. The healthcare cost and utilization project: an overview. Eff Clin Pract 2002; 5: 143151.
37. Centers for Disease Control and Prevention International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM). Available at: http://www.cdc.gov/nchs/about/otheract/icd9/abticd10.htm. Accessed March 13, 2007.
38.Jacobs, JP, Wernovsky, G, Elliott, MJ. Analysis of outcomes for congenital cardiac disease: can we do better? Cardiol Young 2007; 17 (Suppl 2): 145158.
39.Jacobs, JP, Franklin, RCG, Jacobs, ML, et al. Classification of the functionally univentricular heart: unity from mapped codes. Cardiol Young 2006; 16 (Suppl 1): 921.
40.Tchervenkov, CI, Jacobs, JP, Weinberg, PM, et al. The nomenclature, definition and classification of hypoplastic left heart syndrome. Cardiol Young 2006; 16: 339368.
41.Jacobs, JP, Franklin, RCG, Wilkinson, JL, et al. The nomenclature, definition and classification of discordant atrioventricular connections. Cardiol Young 2006; 16 (Suppl 3): 7284.
42.Jacobs, JP, Anderson, RH, Weinberg, P, et al. The nomenclature, definition and classification of cardiac structures in the setting of heterotaxy. Cardiol Young 2007; 17 (Suppl 2): 128.

Keywords

Related content

Powered by UNSILO

The importance of nomenclature for congenital cardiac disease: implications for research and evaluation

  • Matthew J. Strickland (a1) (a2), Tiffany J. Riehle-Colarusso (a1), Jeffrey P. Jacobs (a3), Mark D. Reller (a4), William T. Mahle (a5), Lorenzo D. Botto (a6), Paige E. Tolbert (a2), Marshall L. Jacobs (a7), Francois G. Lacour-Gayet (a8), Christo I. Tchervenkov (a9), Constantine Mavroudis (a10) and Adolfo Correa (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.