Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-01T05:24:17.663Z Has data issue: false hasContentIssue false

Immunisation deferral practices surrounding congenital heart surgery

Published online by Cambridge University Press:  01 April 2024

Dana B. Gal*
Affiliation:
Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA Division of Pediatric Cardiology, Children’s Hospital of Los Angeles, Los Angeles, CA, USA
John D. Cleveland
Affiliation:
Division of Pediatric Cardiology, Children’s Hospital of Los Angeles, Los Angeles, CA, USA Department of Cardiothoracic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
Jeffrey E. Vergales
Affiliation:
Division of Pediatric Cardiology, University of Virginia, Charlottesville, VA, USA
Alaina K. Kipps
Affiliation:
Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
*
Corresponding author: Dana B. Gal; Email: dgal@chla.usc.edu

Abstract

Background:

Perioperative immunisation administration surrounding congenital heart surgery is controversial. Delayed immunisation administration results in children being at risk of vaccine-preventable illnesses and is associated with failure to complete immunisation schedules. Among children with CHD, many of whom are medically fragile, vaccine-preventable illnesses can be devastating. Limited research shows perioperative immunisation may be safe and effective.

Methods:

We surveyed Pediatric Acute Care Cardiology Collaborative member centres and explored perioperative immunisation practices. We analysed responses using descriptive statistics.

Results:

Complete responses were submitted by 35/46 (76%) centres. Immunisations were deferred for any period prior to surgery by 23 (66%) centres and after surgery by 31 (89%) centres. Among those who deferred post-operative immunisation, 20 (65%) required deferral only for patients whose operations required cardiopulmonary bypass. Duration of deferral in the pre- and post-operative periods was variable. Many centres included exceptions to their policy for specific vaccine-preventable illnesses. Almost all (34, 97%) centres administer routine childhood immunisation to patients who remain admitted for prolonged periods.

Conclusions:

Most centres defer routine childhood immunisation for some period before and after congenital heart surgery. Centre specific practices vary. Immunisation deferral confers risk to patients and may not be warranted in this population. Further research would be necessary to understand the immunologic impact of these practices.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Murray, AM, Lee, GM, Brown, DW, Saia, TA, Gongwer, R, Nakamura, MM. Immunisation rates and predictors of undervaccination in infants with CHD. Cardiol Young 2023; 33: 242247. DOI: 10.1017/S104795112200052X.CrossRefGoogle ScholarPubMed
Shao, PL, Wu, MH, Wang, JK, Hsu, HW, Huang, LM, Chiu, SN. Pneumococcal vaccination and efficacy in patients with heterotaxy syndrome. Pediatr Res 2017; 82: 101107. DOI: 10.1038/pr.2017.39.CrossRefGoogle ScholarPubMed
McAlvin, B, Clabby, ML, Kirshbom, PM, Kanter, KR, Kogon, BE, Mahle, WT. Routine immunizations and adverse events in infants with single-ventricle physiology. Ann Thorac Surg 2007; 84: 13161319. DOI: 10.1016/j.athoracsur.2007.04.114.CrossRefGoogle ScholarPubMed
Carrillo, S, Woodward, C, Taeed, R. Immunization of children with congenital heart disease undergoing cardiopulmonary bypass. Abstract. Congenit Heart Dis 2014; 9: 453495.Google Scholar
Kroger, A, Bahta, L, Long, S, Sanchez, P. General best practice guidelines for immunization. Updated 8/1/2023. Available at: https://www.cdc.gov/vaccines/hcp/acip-recs/general-recs/index.html. Accessed 8/23/2023.Google Scholar
Takanashi, M, Ogata, S, Honda, T, et al. Timing of Haemophilus influenzae type b vaccination after cardiac surgery. Pediatr Int 2016; 58: 691697. DOI: 10.1111/ped.12899.CrossRefGoogle ScholarPubMed
Vergales, J, Dean, P, Raphael, J, et al. Cardiopulmonary bypass and infant vaccination titers. Pediatrics 2020; 145. DOI: 10.1542/peds.2019-1716.CrossRefGoogle ScholarPubMed
Simsek, M, Velioglu Ocalmaz, MS, Bastopcu, M, Sargin, M, Aksaray, S. Cardiac surgery with cardiopulmonary bypass markedly lowers SARS-COV-2 antibody titer. Turk Gogus Kalp Damar Cerrahisi Derg 2022; 30: 160166. DOI: 10.5606/tgkdc.dergisi.2022.23347.CrossRefGoogle ScholarPubMed
Hayashi, R, Takami, Y, Fujigaki, H, et al. Effects of cardiopulmonary bypass on immunoglobulin G antibody titres after SARS-CoV2 vaccination. Interact Cardiovasc Thorac Surg 2022; 35. DOI: 10.1093/icvts/ivac123,CrossRefGoogle ScholarPubMed
Strobel, RJ, Narahari, AK, Rotar, EP, et al. Effect of cardiopulmonary bypass on SARS-CoV-2 vaccination antibody levels. J Am Heart Assoc 2023; 12: e029406. DOI: 10.1161/JAHA.123.029406.CrossRefGoogle ScholarPubMed
Guerra, FA. Delays in immunization have potentially serious health consequences. Paediatr Drugs 2007; 9: 143148. DOI: 10.2165/00148581-200709030-00002.CrossRefGoogle ScholarPubMed
Hill, HA, Yankey, D, Elam-Evans, LD, Chen, M, Singleton, JA. Vaccination coverage by age 24 months among children born in 2019 and 2020 - National Immunization Survey-Child, United States, 2020-2022. MMWR Morb Mortal Wkly Rep 2023; 72: 11901196. DOI: 10.15585/mmwr.mm7244a3.CrossRefGoogle ScholarPubMed
Jones, MN, Brown, CM, Widener, MJ, Sucharew, HJ, Beck, AF. Area-level socioeconomic factors are associated with noncompletion of pediatric preventive services. J Prim Care Commun Health 2016; 7: 143148. DOI: 10.1177/2150131916632361.CrossRefGoogle ScholarPubMed
Harris, PA, Taylor, R, Minor, BL, et al. The REDCap consortium: building an international community of software platform partners. J Biomed Inform 2019; 95: 103208. DOI: 10.1016/j.jbi.2019.103208.CrossRefGoogle ScholarPubMed
Pieren, DKJ, Boer, MC, de Wit, J. The adaptive immune system in early life: the shift makes it count. Front Immunol 2022; 13: 1031924. DOI: 10.3389/fimmu.2022.1031924.CrossRefGoogle ScholarPubMed
Zabeida, A, Lebel, MH, Renaud, C, Cloutier, M, Robitaille, N. Reevaluating immunization delays after red blood cell transfusion. Transfusion 2019; 59: 28062811. DOI: 10.1111/trf.15433.CrossRefGoogle ScholarPubMed
Casale, M, Di Maio, N, Verde, V, et al. Response to measles, mumps and rubella (MMR) vaccine in transfusion-dependent patients. Vaccines (Basel) 2021; 9: 561. DOI: 10.3390/vaccines9060561.CrossRefGoogle ScholarPubMed
Ahn, SH, Zhiang, J, Kim, H, et al. Postvaccination fever response rates in children derived using the fever coach mobile app: a retrospective observational study. JMIR mHealth uHealth 2019; 7: e12223. DOI: 10.2196/12223.CrossRefGoogle ScholarPubMed
Ota, MOC, Badur, S, Romano-Mazzotti, L, Friedland, LR. Impact of COVID-19 pandemic on routine immunization. Ann Med 2021; 53: 22862297. DOI: 10.1080/07853890.2021.2009128.CrossRefGoogle ScholarPubMed