Skip to main content Accessibility help

Comparison of self-expandable and balloon-expanding stents for hybrid ductal stenting in hypoplastic left heart complex

  • Sebastian Goreczny (a1) (a2), Shakeel A. Qureshi (a1), Eric Rosenthal (a1), Thomas Krasemann (a1), Mohamed S. Nassar (a1), David R. Anderson (a1) and Gareth J. Morgan (a1)...



We aimed to compare the procedural and mid-term performance of a specifically designed self-expanding stent with balloon-expandable stents in patients undergoing hybrid palliation for hypoplastic left heart syndrome and its variants.


The lack of specifically designed stents has led to off-label use of coronary, biliary, or peripheral stents in the neonatal ductus arteriosus. Recently, a self-expanding stent, specifically designed for use in hypoplastic left heart syndrome, has become available.


We carried out a retrospective cohort comparison of 69 neonates who underwent hybrid ductal stenting with balloon-expandable and self-expanding stents from December, 2005 to July, 2014.


In total, 43 balloon-expandable stents were implanted in 41 neonates and more recently 47 self-expanding stents in 28 neonates. In the balloon-expandable stents group, stent-related complications occurred in nine patients (22%), compared with one patient in the self-expanding stent group (4%). During follow-up, percutaneous re-intervention related to the ductal stent was performed in five patients (17%) in the balloon-expandable stent group and seven patients (28%) in self-expanding stents group.


Hybrid ductal stenting with self-expanding stents produced favourable results when compared with the results obtained with balloon-expandable stents. Immediate additional interventions and follow-up re-interventions were similar in both groups with complications more common in those with balloon-expandable stents.


Corresponding author

Correspondence to: Dr G. J. Morgan, Department of Congenital Heart Disease, St Thomas’s Hospital, Westminster Bridge Rd, London SE1 7EH, United Kingdom. Tel: +44 20 7188 4547; Fax: +44 20 7188 4546; E-mail:


Hide All
1. Gibbs, JL, Wren, C, Watterson, KG, Hunter, S, Hamilton, JR. Stenting of the arterial duct combined with banding of the pulmonary arteries and atrial septectomy or septostomy: a new approach to palliation for the hypoplastic left heart syndrome. Br Heart J 1993; 69: 551555.
2. Gibbs, JL, Uzun, O, Blackburn, ME, Wren, C, Hamilton, JR, Watterson, KG. Fate of the stented arterial duct. Circulation 1999; 99: 26212625.
3. Akintuerk, H, Michel-Behnke, I, Valeske, K, et al. Stenting of the arterial duct and banding of pulmonary arteries: basis for combined Norwood stage I and II repair in hypoplastic left heart. Circulation 2002; 105: 10991103.
4. Michel-Behnke, I, Akintuerk, H, Marquardt, I, et al. Stenting of the ductus arteriosus and banding of the pulmonary arteries: basis for various surgical strategies in newborns with multiple left heart obstructive lesions. Heart. 2003; 89: 645650.
5. Galantowicz, M, Cheatham, JP. Lessons learned from the development of a new hybrid strategy for the management of hypoplastic left heart syndrome. Pediatr Cardiol. 2005; 26: 190199.
6. Akinturk, H, Michel-Behnke, I, Valeske, K, et al. Hybrid transcatheter-surgical palliation: basis for univentricular or biventricular repair: the Giessen experience. Pediatr Cardiol 2007; 28: 7987.
7. Caldarone, CA, Benson, L, Holtby, H, Li, J, Redington, AN, Van Arsdell, GS. Initial experience with hybrid palliation for neonates with single-ventricle physiology. Ann Thorac Surg 2007; 84: 12941300.
8. Galantowicz, M, Cheatham, JP, Phillips, A, et al. Hybrid approach for hypoplastic left heart syndrome: intermediate results after the learning curve. Ann Thorac Surg 2008; 85: 20632070.
9. Honjo, O, Benson, LN, Mewhort, HE, et al. Clinical outcomes, program evolution, and pulmonary artery growth in single ventricle palliation using hybrid and Norwood palliative strategies. Ann Thorac Surg 2009; 87: 18851893.
10. Venugopal, PS, Luna, KP, Anderson, DR, et al. Hybrid procedure as an alternative to surgical palliation of high-risk infants with hypoplastic left heart syndrome and its variants. J Thorac Cardiovasc Surg. 2010; 139: 12111215.
11. Moszura, T, Dryzek, P, Goreczny, S, et al. A 10-year single-centre experience in percutaneous interventions for multi-stage treatment of hypoplastic left heart syndrome. Cardiol Young 2014; 24: 5463.
12. Baba, K, Chaturvedi, R, Lee, KJ, Caldarone, CA, Benson, LN. Fate of the ductal stent after hybrid palliation for hypoplastic left heart syndrome. Ann Thorac Surg 2013; 95: 16601664.
13. Lloyd, DF, Cutler, L, Tibby, SM, et al. Analysis of preoperative condition and interstage mortality in Norwood and hybrid procedures for hypoplastic left heart syndrome using the Aristotle scoring system. Heart 2014; 100: 775780.
14. Schranz, D, Bauer, A, Reich, B, et al. Fifteen-year single center experience with the “Giessen Hybrid” approach for hypoplastic left heart and variants: current strategies and outcomes. Pediatr Cardiol 2015; 36: 365373.
15. Rolland, PH, Charifi, AB, Verrier, C, et al. Hemodynamics and wall mechanics after stent placement in swine iliac arteries: comparative results from six stent designs. Radiology 1999; 213: 229246.
16. Stoeckel, D, Pelton, A, Duerig, T. Self-expanding nitinol stents: material and design considerations. Eur Radiol 2004; 14: 292301.
17. Grenacher, L, Rohde, S, Gänger, E, Deutsch, J, Kauffmann, GW, Richter, GM. In vitro comparison of self-expanding versus balloon-expandable stents in a human ex vivo model. Cardiovasc Intervent Radiol 2006; 29: 249254.
18. Goreczny, S, Qureshi, S, Rosenthal, E, et al. Self-expanding stent implantation in arterial duct during hybrid palliation of hypoplastic left heart syndrome: midterm experience with a specially designed stent. EuroIntervention 2015; 10: 13181325.
19. Schranz, D, Michel-Behnke, I. Advances in interventional and hybrid therapy in neonatal congenital heart disease. Semin Fetal Neonatal Med 2013; 18: 311321.
20. Schneider, M, Zartner, P, Sidiropoulos, A, Konertz, W, Hausdorf, G. Stent implantation of the arterial duct in newborns with duct-dependent circulation. Eur Heart J 1998; 19: 14011409.
21. Santoro, G, Palladino, MT, Capozzi, G, Iacono, C, Russo, MG, Calabrò, R. Pulmonary artery growth following arterial duct stenting in congenital heart disease with duct-dependent pulmonary circulation. Catheter Cardiovasc Interv 2009; 74: 10721076.
22. Santoro, G, Gaio, G, Giugno, L, et al. Ten-years, single-center experience with arterial duct stenting in duct-dependent pulmonary circulation: early results, learning-curve changes, and mid-term outcome. Catheter Cardiovasc Interv 2015; 86: 249257.
23. Ballard, G, Tibby, S, Miller, O, et al. Growth of left heart structures following the hybrid procedure for borderline hypoplastic left heart. Eur J Echocardiogr 2010; 11: 870874.
24. Bellsham-Revell, HR, Tibby, SM, Bell, AJ, et al. Serial magnetic resonance imaging in hypoplastic left heart syndrome gives valuable insight into ventricular and vascular adaptation. J Am Coll Cardiol 2013; 61: 561570.
25. Bell, A, Rawlins, D, Bellsham-Revell, H, Miller, O, Razavi, R, Simpson, J. Assessment of right ventricular volumes in hypoplastic left heart syndrome by real-time three-dimensional echocardiography: comparison with cardiac magnetic resonance imaging. Eur Heart J Cardiovasc Imaging 2014; 15: 257266.
26. Nassar, MS, Bertaud, S, Goreczny, S, et al. Technical and anatomical factors affecting the size of the branch pulmonary arteries following first-stage Norwood palliation for hypoplastic left heart syndrome. Interact Cardiovasc Thorac Surg 2015; 20: 631635.
27. Nassar, MS, Narayan, SA, Nyman, A, et al. Second stage after initial hybrid palliation for hypoplastic left heart syndrome: arterial or venous shunt? J Thorac Cardiovasc Surg. 2015; 150: 350357.


Comparison of self-expandable and balloon-expanding stents for hybrid ductal stenting in hypoplastic left heart complex

  • Sebastian Goreczny (a1) (a2), Shakeel A. Qureshi (a1), Eric Rosenthal (a1), Thomas Krasemann (a1), Mohamed S. Nassar (a1), David R. Anderson (a1) and Gareth J. Morgan (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed