Skip to main content Accessibility help

Clinical epidemiology and centre variation in chylothorax rates after cardiac surgery in children: a report from the Pediatric Cardiac Critical Care Consortium

  • Jason R. Buckley (a1), Eric M. Graham (a1), Michael Gaies (a2), Jeffrey A. Alten (a3), David S. Cooper (a4), John M. Costello (a5), Yuliya Domnina (a6), Darren Klugman (a7), Sara K. Pasquali (a2), Janet E. Donohue (a8), Wenying Zhang (a8) and Mark A. Scheurer (a1)...



Chylothorax after paediatric cardiac surgery incurs significant morbidity; however, a detailed understanding that does not rely on single-centre or administrative data is lacking. We described the present clinical epidemiology of postoperative chylothorax and evaluated variation in rates among centres with a multicentre cohort of patients treated in cardiac ICU.


This was a retrospective cohort study using prospectively collected clinical data from the Pediatric Cardiac Critical Care Consortium registry. All postoperative paediatric cardiac surgical patients admitted from October, 2013 to September, 2015 were included. Risk factors for chylothorax and association with outcomes were evaluated using multivariable logistic or linear regression models, as appropriate, accounting for within-centre clustering using generalised estimating equations.


A total of 4864 surgical hospitalisations from 15 centres were included. Chylothorax occurred in 3.8% (n=185) of hospitalisations. Case-mix-adjusted chylothorax rates varied from 1.5 to 7.6% and were not associated with centre volume. Independent risk factors for chylothorax included age <1 year, non-Caucasian race, single-ventricle physiology, extracardiac anomalies, longer cardiopulmonary bypass time, and thrombosis associated with an upper-extremity central venous line (all p<0.05). Chylothorax was associated with significantly longer duration of postoperative mechanical ventilation, cardiac ICU and hospital length of stay, and higher in-hospital mortality (all p<0.001).


Chylothorax after cardiac surgery in children is associated with significant morbidity and mortality. A five-fold variation in chylothorax rates was observed across centres. Future investigations should identify centres most adept at preventing and managing chylothorax and disseminate best practices.


Corresponding author

Correspondence to: J. R. Buckley, MD, 601 Children’s Hospital, 165 Ashley Avenue MSC915, Charleston, SC 29425, United States of America. Tel: +843 792 9146; Fax: +843 792 5878; E-mail:


Hide All
1. Zuluaga, MT. Chylothorax after surgery for congenital heart disease. Curr Opin Pediatr 2012; 24: 291294.
2. Chan, EH, Russell, JL, Williams, WG, Van Arsdell, GS, Coles, JG, McCrindle, BW. Postoperative chylothorax after cardiothoracic surgery in children. Ann Thorac Surg 2005; 80: 18641870.
3. Mery, CM, Moffett, BS, Khan, MS, et al. Incidence and treatment of chylothorax after cardiac surgery in children: analysis of a large multi-institution database. J Thorac Cardiovasc Surg 2014; 147: 678686.e1; discussion 85–86.
4. Biewer, ES, Zurn, C, Arnold, R, et al. Chylothorax after surgery on congenital heart disease in newborns and infants -risk factors and efficacy of MCT-diet. J Cardiothorac Surg 2010; 5: 127.
5. Allen, EM, van Heeckeren, DW, Spector, ML, Blumer, JL. Management of nutritional and infectious complications of postoperative chylothorax in children. J Pediatr Surg 1991; 26: 11691174.
6. McCulloch, MA, Conaway, MR, Haizlip, JA, Buck, ML, Bovbjerg, VE, Hoke, TR. Postoperative chylothorax development is associated with increased incidence and risk profile for central venous thromboses. Pediatr Cardiol 2008; 29: 556561.
7. Beghetti, M, La Scala, G, Belli, D, Bugmann, P, Kalangos, A, Le Coultre, E. Etiology and management of pediatric chylothorax. J Pediatr 2000; 136: 653658.
8. Bauman, ME, Moher, C, Bruce, AK, Kuhle, S, Kaur, S, Massicotte, MP. Chylothorax in children with congenital heart disease: incidence of thrombosis. Thromb Res 2013; 132: e83e85.
9. Cormack, BE, Wilson, NJ, Finucane, K, West, TM. Use of Monogen for pediatric postoperative chylothorax. Ann Thorac Surg 2004; 77: 301305.
10. Milonakis, M, Chatzis, AC, Giannopoulos, NM, et al. Etiology and management of chylothorax following pediatric heart surgery. J Card Surg 2009; 24: 369373.
11. White, SC, Seckeler, MD, McCulloch, MA, Buck, ML, Hoke, TR, Haizlip, JA. Patients with single ventricle anatomy may respond better to octreotide therapy for chylothorax after congenital heart surgery. J Card Surg 2014; 29: 259264.
12. Borasino, S, Diaz, F, El Masri, K, Dabal, RJ, Alten, JA. Central venous lines are a risk factor for chylothorax in infants after cardiac surgery. World J Pediatr Congenit Heart Surg 2014; 5: 522526.
13. Pasquali, SK, Peterson, ED, Jacobs, JP, et al. Differential case ascertainment in clinical registry versus administrative data and impact on outcomes assessment for pediatric cardiac operations. Ann Thorac Surg 2013; 95: 197203.
14. Pasquali, SK, He, X, Jacobs, JP, et al. Measuring hospital performance in congenital heart surgery: aministrative versus clinical registry data. Ann Thorac Surg 2015; 99: 932938.
15. Gaies, M, Cooper, DS, Tabbutt, S, et al. Collaborative quality improvement in the cardiac intensive care unit: development of the Paediatric Cardiac Critical Care Consortium (PC4). Cardiol Young 2015; 25: 951957.
16. Gaies, M, Donohue, JE, Willis, GM, et al. Data integrity of the Pediatric Cardiac Critical Care Consortium (PC4) clinical registry. Cardiol Young 2016; 26: 10901096.
17. Centers for Disease Control. Retrieved October 14, 2015, from
18. Jacobs, JP, Jacobs, ML, Maruszewski, B, et al. Initial application in the EACTS and STS Congenital Heart Surgery Databases of an empirically derived methodology of complexity adjustment to evaluate surgical case mix and results. Eur J Cardiothorac Surg 2012; 42: 775779.
19. O’Brien, SM, Jacobs, JP, Pasquali, SK, et al. The Society of Thoracic Surgeons Congenital Heart Surgery Database mortality risk model: part 1-statistical methodology. Ann Thorac Surg 2015; 100: 10541062.
20. Dori, Y, Keller, MS, Fogel, MA, et al. MRI of lymphatic abnormalities after functional single-ventricle palliation surgery. Am J Roentgenol 2014; 203: 426431.
21. Dori, Y, Keller, MS, Rychik, J, Itkin, M. Successful treatment of plastic bronchitis by selective lymphatic embolization in a Fontan patient. Pediatrics 2014; 134: e590e595.
22. Rusin, CG, Acosta, SI, Sheckerdemian, LS, et al. Prediction of imminent, severe deterioration of children with parallel circulations using real-time processing of physiologic data. J Thorac Cardiovasc Surg 2016; 152: 171177.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed