Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-20T21:18:09.006Z Has data issue: false hasContentIssue false

Type II Spectral Flow and the Eta Invariant

Published online by Cambridge University Press:  20 November 2018

Jerome Kaminker
Affiliation:
Department of Mathematical Sciences IUPUI 402 N. Blackford St. Indianapolis, IN 46202-3216 USA, email: kaminker@math.iupui.edu
Vicumpriya Perera
Affiliation:
Kent State University Trumbull Campus 4314 Mahoning Ave. NW Warren, OH 44483 USA, email: pererav@trumbell.kent.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The relative eta invariant of Atiyah-Patodi-Singer will be shown to be expressible in terms of the notion of Type I and Type II spectral flow.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2000

References

[1] Atiyah, M. F. and Singer, I. M., Index theory for skew-adjoint Fredholm operators. Inst. Hautes Études Sci. Publ. Math. 37 (1969), 305326.Google Scholar
[2] Atiyah, M. F., Singer, I. M. and Patodi, V. K., Spectral asymmetry and Riemannian geometry, III. Math. Proc. Camb. Phil. Soc. 79 (1976), 7199.Google Scholar
[3] Basu, D., A classifying space for K1(X, R). Integral Equations Operator Theory 31 (1998), 287298.Google Scholar
[4] Boos-Bavnbek, B. and Wojciechowski, K. P., Elliptic boundary problems for Dirac operators. Birkhäuser, 1993.Google Scholar
[5] Carey, A. and Phillips, J., Unbounded Fredholm modules and spectral flow. Preprint, 1997.Google Scholar
[6] Douglas, R. G., Hurder, S. and Kaminker, J., Cyclic cocycles, renormalization and eta-invariants. Invent.Math. 103 (1991), 101181.Google Scholar
[7] Douglas, R. G., Hurder, S. and Kaminker, J., The longitudinal cocycle and the index of Toeplitz operators. J. Funct. Anal. 101 (1991), 120144.Google Scholar
[8] Douglas, R. G. and Kaminker, J., Induced cyclic cocycles and higher eta invariants. J. Funct. Anal. 147 (1997), 301326.Google Scholar
[9] Hurder, S., Eta invariants and the odd index theorem for coverings. Contemp.Math. 105 (1990), 4782 Google Scholar
[10] Moriyoshi, H. and Natsume, T., The Godbillon-Vey cyclic cocycle and longitudinal Dirac operators. Pacific J. Math. 172 (1996), 483539.Google Scholar
[11] Perera, V., Real valued spectral flow. Contemp.Math. 185 (1993), 307318.Google Scholar
[12] Phillips, J., Self-adjoint Fredholm operators and spectral flow. Canad. Math. Bull. 39 (1996), 460467.Google Scholar
[13] Phillips, J., Spectral flow in type I and II factors—a new approach. Cyclic Cohomology and Noncommutative Geometry (Waterloo, 1995), Fields Inst. Commum. 17 (1997), 137153.Google Scholar
[14] Ramachandran, Mohan, Von Neumann index theorems for manifolds with boundary. J. Differential Geom. 38 (1993), 315349.Google Scholar
[15] Rieffel, M., The type of group measure space von Neumann algebras. Monatsh. Math (2) 85 (1978), 149162.Google Scholar