Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-01T06:47:08.059Z Has data issue: false hasContentIssue false

A minimax inequality for inscribed cones revisited

Published online by Cambridge University Press:  31 August 2023

Zokhrab Mustafaev*
Affiliation:
Department of Mathematics, University of Houston–Clear Lake, Houston, TX 77058, USA

Abstract

In 1993, E. Lutwak established a minimax inequality for inscribed cones of origin symmetric convex bodies. In this work, we re-prove Lutwak’s result using a maxmin inequality for circumscribed cylinders. Furthermore, we explore connections between the maximum volume of inscribed double cones of a centered convex body and the minimum volume of circumscribed cylinders of its polar body.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfonseca, M. A., Nazarov, P., Ryabogin, D., and Yaskin, V., A solution to the fifth and the eighth Busemann–Petty problems in a small neighborhood of the Euclidean ball . Adv. Math. 390(2021), Article no. 107920, 28 pp.CrossRefGoogle Scholar
Bezdek, K. and Lángi, Z., Volumetric discrete geometry, Discrete Mathematics and Its Applications (Boca Raton), CRC Press, Boca Raton, Fl, 2019.CrossRefGoogle Scholar
Blaschke, W., Über affine Geometrie VII: Neue Extremeigenschaften von ellipse und ellipsoid . Ber. Verh. Sächs. Akad. Wiss. Leipzig Math-Phys. Kl. 69(1917), 306318.Google Scholar
Busemann, H. and Petty, C. M., Problems on convex bodies . Math. Scand. 4(1956), 8894.CrossRefGoogle Scholar
Gardner, R. J., Geometric tomography. 2nd ed., Encyclopedia of Mathematics and Its Applications, 58, Cambridge University Press, New York, 2006.CrossRefGoogle Scholar
Horváth, Á. G. and Lángi, Z., On the volume of the convex hull of two convex bodies . Monatsh. Math. 174(2014), no. 2, 219229.CrossRefGoogle Scholar
Koldobsky, A., Fourier analysis in convex geometry, Mathematical Surveys and Monographs, 116, American Mathematical Society, Providence, RI, 2005.CrossRefGoogle Scholar
Lutwak, E., Intersection bodies and dual mixed volumes . Adv. Math. 71(1988), 232261.CrossRefGoogle Scholar
Lutwak, E., A minimax inequality for inscribed cones . J. Math. Anal. Appl. 176(1993), no. 1, 148155.CrossRefGoogle Scholar
Martini, H. and Mustafaev, Z., Some applications of cross-section measures in Minkowski spaces . Period. Math. Hung. 53(2006), 185197.CrossRefGoogle Scholar
Martini, H. and Mustafaev, Z., New inequalities for product of cross-section measures . Math. Inequal. Appl. 20(2017), no. 2, 353361.Google Scholar
Petty, C. M., Projection bodies . In: Proc. coll. convexity, Copenhagen, 1965, Kobenhavs Univ. Mat. Inst., Copenhagen, 1967, pp. 234241.Google Scholar
Petty, C. M., Isoperimetric problems . In: Proc. conf. convexity and combinatorial geometry (Univ. Oklahoma, 1971), University of Oklahoma, Norman, OK, 1972, pp. 2641.Google Scholar
Rogers, C. A. and Shephard, G. C., Some extremal problems for convex bodies . Mathematika 5(1958), 93102.CrossRefGoogle Scholar
Santaló, L. A., Un invariante afin Para los cuerpos convexos del espacio de $n$ dimensiones . Port. Math. 8(1949), 155161.Google Scholar
Schneider, R., Convex bodies: the Brunn–Minkowski theory. 2nd ed., Encyclopedia of Mathematics and Its Applications, 151, Cambridge University Press, Cambridge, 2014.Google Scholar
Thompson, A. C., Minkowski geometry, Encyclopedia of Mathematics and Its Applications, 63, Cambridge University Press, Cambridge, 1996.CrossRefGoogle Scholar