Skip to main content Accessibility help
×
Home
Hostname: page-component-5bf98f6d76-gtjl9 Total loading time: 0.316 Render date: 2021-04-22T00:54:27.551Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Projective Reconstruction in Algebraic Vision

Published online by Cambridge University Press:  13 November 2019

Atsushi Ito
Affiliation:
Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya, 464-8602, Japan Email: atsushi.ito@math.nagoya-u.ac.jp
Makoto Miura
Affiliation:
Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul, 130-722, Republic of Korea Email: miura@kias.re.kr
Kazushi Ueda
Affiliation:
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan Email: kazushi@ms.u-tokyo.ac.jp

Abstract

We discuss the geometry of rational maps from a projective space of an arbitrary dimension to the product of projective spaces of lower dimensions induced by linear projections. In particular, we give an algebro-geometric variant of the projective reconstruction theorem by Hartley and Schaffalitzky.

Type
Article
Copyright
© Canadian Mathematical Society 2019

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

A. I. was supported by Grant-in-Aid for Scientific Research (14J01881, 17K14162). M. M. was supported by Korea Institute for Advanced Study. K. U. was partially supported by Grant-in-Aid for Scientific Research (15KT0105, 16K13743, 16H03930).

References

Arbarello, E., Cornalba, M., Griffiths, P. A., and Harris, J., Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften, 267, Springer-Verlag, 1985. https://doi.org/10.1007/978-1-4757-5323-3CrossRefGoogle Scholar
Aholt, C., Sturmfels, B., and Thomas, R., A Hilbert scheme in computer vision. Canad. J. Math. 65(2013), no. 5, 961988. https://doi.org/10.4153/CJM-2012-023-2CrossRefGoogle Scholar
Gelfand, I. M., Kapranov, M. M., and Zelevinsky, A. V., Discriminants, resultants and multidimensional determinants. Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2008.Google Scholar
Hartley, R. I. and Schaffalitzky, F., Reconstruction from projections using Grassmann tensors. Int. J. Comput. Vis. 83(2009), no. 3, 274293. https://doi.org/10.1007/s11263-009-0225-1Google Scholar
Hartley, R. and Vidal, R., Perspective nonrigid shape and motion recovery. Computer Vision – ECCV 2008, Lecture Notes in Computer Science, 5302, 2008, pp. 276289.Google Scholar
Li, B., Images of rational maps of projective spaces. Int. Math. Res. Not. IMRN 2008 no. 13, 41904228. https://doi.org/10.1093/imrn/rnx003Google Scholar
Lieblich, M. and Van Meter, L., Two Hilbert schemes in computer vision. arxiv:1707.09332Google Scholar
Mukai, S., Polarized K3 surfaces of genus 18 and 20. In: Complex projective geometry (Trieste, 1989/Bergen, 1989), London Math. Soc. Lecture Note Ser., 179, Cambridge Univ. Press, Cambridge, 1992, pp. 264276. https://doi.org/10.1017/CBO9780511662652.019CrossRefGoogle Scholar
Nasihatkon, B., Hartley, R., and Trumpf, J., On projective reconstruction in arbitrary dimensions. 2014 IEEE Conference on Computer Vision and Pattern Recognition (June 2014, pp. 477–484).10.1109/CVPR.2014.68Google Scholar
Ottaviani, G., Varietà proiettive di codimensione piccola. Aracne, 1995.Google Scholar
Wolf, L. and Shashua, A., On projection matrices 𝓟k to 𝓟2, k = 3, …, 6, and their applications in computer vision. Int. J. Comput. Vis. 48(2002), no. 1, 5367. https://doi.org/10.1023/A:1014855311993CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 58 *
View data table for this chart

* Views captured on Cambridge Core between 13th November 2019 - 22nd April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Projective Reconstruction in Algebraic Vision
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Projective Reconstruction in Algebraic Vision
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Projective Reconstruction in Algebraic Vision
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *