Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-23T13:17:33.706Z Has data issue: false hasContentIssue false

On the stability of ring relative equilibria in the N-body problem on $\mathbb {S}^2$ with Hodge potential

Published online by Cambridge University Press:  03 March 2023

Jaime Andrade*
Affiliation:
GISDA, Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Casilla 5-C, Concepción, Chile e-mail: fcrespo@ubiobio.cl dilvelias@gmail.com
Stefanella Boatto
Affiliation:
Departamento de Matemática Aplicada, Instituto de Matemática, Universidade Federal de Rio de Janeiro, Avenida Athos da Silveira Ramos 149, Centro de Tecnologia Bloco C, Cidade Universitaria, Caixa Postal 68530, 21941-909 Rio de Janeiro, Brazil e-mail: stefanella.boatto@matematica.ufrj.br
F. Crespo
Affiliation:
GISDA, Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Casilla 5-C, Concepción, Chile e-mail: fcrespo@ubiobio.cl dilvelias@gmail.com
D.E. Espejo
Affiliation:
GISDA, Departamento de Matemática, Facultad de Ciencias, Universidad del Bío-Bío, Casilla 5-C, Concepción, Chile e-mail: fcrespo@ubiobio.cl dilvelias@gmail.com

Abstract

In this paper, we study the stability of the ring solution of the N-body problem in the entire sphere $\mathbb {S}^2$ by using the logarithmic potential proposed in Boatto et al. (2016, Proceedings of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences 472, 20160020) and Dritschel (2019, Philosophical Transactions of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences 377, 20180349), derived through a definition of central force and Hodge decomposition theorem for 1-forms in manifolds. First, we characterize the ring solution and study its spectral stability, obtaining regions (spherical caps) where the ring solution is spectrally stable for $2\leq N\leq 6$, while, for $N\geq 7$, the ring is spectrally unstable. The nonlinear stability is studied by reducing the system to the homographic regular polygonal solutions, obtaining a 2-d.o.f. Hamiltonian system, and therefore some classic results on stability for 2-d.o.f. Hamiltonian systems are applied to prove that the ring solution is unstable at any parallel where it is placed. Additionally, this system can be reduced to 1-d.o.f. by using the angular momentum integral, which enables us to describe the phase portraits and use them to find periodic ring solutions to the full system. Some of those solutions are numerically approximated.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Jaime Andrade had the partial support of CONICYT (Chile) through the FONDECYT project 11180776.

References

Andrade, J., Boatto, S., Combot, T., Duarte, G., and Stuchi, T. J., N-body dynamics on an infinite cylinder: the topological signature in the dynamics. Regul. Chaotic Dyn. 25(2020), no. 1, 78110.CrossRefGoogle Scholar
Boatto, S., Dritschel, D., and Schaefer, R., N-body dynamics on closed surfaces: the axioms of mechanics. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 472(2016), no. 2192, 20160020.Google ScholarPubMed
Boatto, S. and Simó, C., A vortex ring on a sphere: the case of total vorticity equal to zero. Philos. Trans. R. Soc. A 377(2019), no. 2158, 20190019.CrossRefGoogle Scholar
Bolyai, F., Geometrische untersuchungen: Leben und schriften der beiden bolyai, Vol. 1, Teubner, Berlin, 1913.Google Scholar
Dritschel, D., Point mass dynamics on spherical hypersurfaces. Philos. Trans. R. Soc. A 377(2019), no. 2158, 20180349.CrossRefGoogle Scholar
Gelfand, I. and Shenitzer, A., Lectures on linear algebra, Interscience Tracts in Pure and Applied Mathematics, Interscience Publishers, Geneva, 1961.Google Scholar
Hansen, E., A table of series and products, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Hoboken, NJ, 1975.Google Scholar
Hernández-Garduño, A., Pérez-Chavela, E., and Zhu, S., Stability of regular polygonal relative equilibria on ${S}^2$ . J. Nonlinear Sci. 32(2022), no. 5, 73.CrossRefGoogle Scholar
Lobachevsky, N., Nascent non-Euclidean geometry. Quantum 9(1999), no. 5, 20.Google Scholar
Markeev, A. P., Libration points in celestial mechanics and cosmic dynamics, Izdatel’stvo Nauka, Moscow, 1978.Google Scholar
Serret, P. J., Théorie nouvelle géométrique et mécanique des lignes a double courbure, Mallet-Bachelier, Paris, 1860.Google Scholar
Sokol’skii, A., On stability of an autonomous Hamiltonian system with two degrees of freedom under first-order resonance: Pmm vol. 41, ${n}^{\circ }$ 1, 1977, pp. 24–33 . J. Appl. Math. Mech. 41(1977), no. 1, 2028.CrossRefGoogle Scholar