Skip to main content Accessibility help
×
Home

On a Class of Fully Nonlinear Elliptic Equations Containing Gradient Terms on Compact Hermitian Manifolds

  • Rirong Yuan (a1)

Abstract

In this paper we study a class of second order fully nonlinear elliptic equations containing gradient terms on compact Hermitian manifolds and obtain a priori estimates under proper assumptions close to optimal. The analysis developed here should be useful to deal with other Hessian equations containing gradient terms in other contexts.

Copyright

References

Hide All
[1] Aubin, T., Equations du type Monge-Ampère sur les varietes Kaähleriennes compactes. C. R. Math. Acad. Sci. Paris 283(1976), no. 3, 119121.
[2] Blocki, Z., On uniform estimate in Calabi-Yau theorem. Sci. China Ser. A. 48(2005), 244247. http://dx.doi.org/10.1007/BF02884710
[3] Blocki, Z., A gradient estimate in the Calabi-Yau theorem. Math. Ann. 344(2009), 317327. http://dx.doi.Org/10.1007/s00208-008-0307-3
[4] Boyer, C. and Galicki, K., Sasakian geometry. Oxford University Press, Oxford, 2008.
[5] Boyer, C., Galicki, K., and Kollar, J., Einstein metrics on spheres. Ann. of Math. 162(2005), no. 1, 557580. http://dx.doi.Org/10.4007/annals.2005.162.557
[6] Caffarelli, L., Kohn, J., Nirenberg, L., and Spruck, J., The Dirichlet problem for nonlinear. second-order elliptic equations. II. Complex Monge-Ampere, and uniformly elliptic, equations. Comm. Pure Appl. Math. 38(1985), 209252. http://dx.doi.Org/10.1002/cpa.3160380206
[7] Calabi, E., The space of Kähler metrics. Proc. Internat. Congress Math. Amsterdam, vol. 2(1954), 206207.
[8] Chen, X.-X., A new parabolic flow in Kähler manifolds. Comm. Anal. Geom. 12(2004), 837852. http://dx.doi.org/10.4310/CAC.2004.v12.n4.a4
[9] Chen, X.-X., The space of Kähler metrics. J. Differential Geom. 56(2000), no. 2, 189234. http://dx.doi.Org/10.4310/jdg/1090347643
[10] Donaldson, S.-K., Symmetric spaces, Kähler geometry and Hamiltonian dynamics. In: Northern California symplectic geometry seminar. Amer. Math. Soc. Transl. Ser. 2, 196. American Mathematical Society, Providence, RI. 1999, pp. 1333. http://dx.doi.Org/10.1090/trans2/196/02
[11] Donaldson, S.-K., Moment maps and diffeomorphisms. Asian J. Math. 3(1999), no. 3, 115. http://dx.doi.org/10.4310/AJM.1999.v3.n1.a1
[12] Evans, L., Classical solutions of fully nonlinear convex, second order elliptic equations. Comm. Pure Appl. Math. 35(1982), no. 3, 333363. http://dx.doi.Org/10.1002/cpa.3160350303
[13] Fang, H. and Lai, M.-J., On the geometric flows solving Kaählerian inverse σk equations. Pacific J. Math. 258(2012), no. 2, 291304. http://dx.doi.org/10.2140/pjm.2012.258.291
[14] Fang, H., Lai, M.-J., and Ma, X.-N., On a class of fully nonlinear flows in Kähler geometry. J. Reine Angew. Math. 653(2011), 189220. http://dx.doi.Org/10.1515/CRELLE.2011.027
[15] Fu, J.-X., On non-Kähler Calabi-Yau threefolds with balanced metrics. In: Proceedings of the International Congress of Mathematicians. II. Hindustan Book Agency, New Delhi, 2010, pp. 705716.
[16] Futaki, A., Ono, H., and Wang, G.-F., Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds. J. Differential Geom. 83(2009), no. 3, 585635. http://dx.doi.Org/10.4310/jdg/1264601036
[17] Gauntlett, J., Martelli, D., Sparks, J., and Waldram, D., A new infinite class of Sasaki-Einstein manifolds. Adv. Tneor. Math. Phys. 8(2004), no. 6, 9871000. http://dx.doi.org/10.4310/ATMP.2004.v8.n6.a3
[18] Gauduchon, P., La 1-forme de torsion d'une variété hermitienne compacte. Math. Ann. 267(1984), 495518. http://dx.doi.org/10.1007/BF01455968
[19] Godlinski, M., Kopczynski, W., and Nurowski, P., Locally Sasakian manifolds. Classical Quantum Gravity 17(2000), no. 18, 105115.
[20] Guan, B., The Dirichlet problem for complex Monge-Ampère equations and regularity of the pluri-complex Green function. Comm. Anal. Geom. 6(1998), no. 4, 687703. http://dx.doi.org/10.4310/CAC.1998.v6.n4.a3
[21] Guan, B., Second order estimates and regularity for fully nonlinear elliptic equations on Riemannian manifolds. Duke Math. J. 163(2014), no. 8, 14911524. http://dx.doi.org/10.1215/00127094-2713591
[22] Guan, B. and Li, Q., The Dirichlet problem for a complex Monge-Ampère type equation on Hermitian manifolds. Adv. Math. 246(2013), 351367. http://dx.doi.org/10.1016/j.aim.2O13.07.006
[23] Guan, B. and Sun, W., On a class of fully nonlinear elliptic equations on Hermitian manifolds. Calc. Var. Partial Differential Equations. 54(2015), no. 1, 901916. http://dx.doi.Org/10.1007/s00526-014-0810-1
[24] Guan, B. and Spruck, J., Boundary-value problems on 𝕊n for surfaces of constant Gauss curvature. Ann. of Math. 138(1993), no. 3, 601624. http://dx.doi.org/10.2307/2946558
[25] Guan, P.-F. and Zhang, X., A geodesic equation in the space of Sasaian metrics. Adv. Lect. Math., 17. International Press, Somerville, 2011.
[26] Guan, P.-F. and Zhang, X., Regularity of the geodesic equation in the space of Sasakian metrics. Adv. Math. 230(2012), no. 1, 321371. http://dx.doi.Org/10.1016/j.aim.2O11.12.002
[27] Hoffman, D., Rosenberg, H., and Spruck, J., Boundary value problems for surfaces of constant Gauss curvature. Comm. Pure Appl. Math. 45(1992), no. 8, 10511062. http://dx.doi.org/10.1002/cpa.3160450807
[28] Krylov, N.-V., Boundedly inhomogeneous elliptic andparabolic equations in a domain. (Russian). Izv. Akad. Nauk SSSR Ser. Mat. Ser. 47(1983), no. 1, 75108.
[29] Mabuchi, T., Some symplectic geometry on Kähler manifolds. I. Osaka J. Math. 24(1987), no. 2, 227252.
[30] Martelli, D. and Sparks, J., Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals. Comm. Math. Phys. 262(2006), no. 1, 5189. http://dx.doi.org/10.1007/s00220-005-1425-3
[31] Martelli, D., Sparks, J. and Yau, S.-T., Sasaki-Einstein manifolds and volume minimisation. Comm. Math. Phys. 280(2008), no. 3, 611673. http://dx.doi.Org/10.1007/s00220-008-0479-4
[32] Phong, D.-H., Picard, S., and Zhang, X.-W., On estimates for the Fu-Yau generalization of a Strominger system. arxiv:1507.08193
[33] Phong, D.-H., Picard, S., and Zhang, X.-W., The Fu-Yau equation with negative slope parameter. arxiv:1 602.08838.
[34] Phong, D.-H., Picard, S., and Zhang, X.-W., The anomaly flow and the Fu-Yau equation. arxiv:1610.02740
[35] Popovici, D., Aeppli cohomology classes associated with Gauduchon metrics on compact complex manifolds. Bull. Soc. Math. France 143(2015), no. 4, 763800. http://dx.doi.Org/10.24033/bsmf.2704
[36] Semmes, S., Complex Monge-Ampère and symplectic manifolds. Amer. J. Math. 114(1992), no. 3, 495550. http://dx.doi.org/10.2307/2374768
[37] Song, J. and Weinkove, B., On the convergence and singularities ofthef-Flow with applications to the Mabuchi energy. Comm. Pure Appl. Math. 61(2008), no. 2, 210229. http://dx.doi.Org/10.1OO2/cpa.2O1 82
[38] Sun, W., On a class of fully nonlinear elliptic equations on closed Hermitian manifolds. J. Geom. Anal. 26(2016), no. 3, 24592473. http://dx.doi.org/10.1007/s12220-015-9634-2
[39] Sun, W., Generalized complex Monge-Ampere type equations on closed Hermitian manifolds. arxiv:1412.8192
[40] Székelyhidi, G., Fully non-linear elliptic equations on compact Hermitian manifolds. arxiv:1 501.02762.
[41] Székelyhidi, G., Tosatti, V., and Weinkove, B., Gauduchon metrics with prescribed volume form. arxiv:1 503.04491
[42] Taylor, M.-E., Partial differential equations. I. Texts in Applied Mathematics, 23. Springer-Verlag, New York, 1996.
[43] Tian, G. and Yau, S.-T., Complete Kahler manifolds with zero Ricci curvature. I. J. Amer. Math. Soc. 3(1990), no. 3, 579609. http://dx.doi.org/10.2307/1990928
[44] Tosatti, V. and Weinkove, B., Hermitian metrics, (n - 1, n - 1)-forms and Monge-Ampere equations. arxiv:1310.6326
[45] Weinkove, B., Convergence of the f-flow on Kahler surfaces. Comm. Anal. Geom. 12(2004), 949965. http://dx.doi.org/10.4310/CAC.2004.v12.n4.a8
[46] Weinkove, B., On the J-flow in higher dimensions and the lower boundedness of the Mabuchi energy. J. Differential Geom. 73(2006), 351358. http://dx.doi.Org/10.4310/jdg/1146169914
[47] Yau, S.-T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Comm. Pure Appl. Math. 31(1978), no. 3, 339411. http://dx.doi.org/10.1002/cpa.3160310304
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

On a Class of Fully Nonlinear Elliptic Equations Containing Gradient Terms on Compact Hermitian Manifolds

  • Rirong Yuan (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed