Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T17:58:12.524Z Has data issue: false hasContentIssue false

On a Class of Fully Nonlinear Elliptic Equations Containing Gradient Terms on Compact Hermitian Manifolds

Published online by Cambridge University Press:  20 November 2018

Rirong Yuan*
Affiliation:
School of Mathematical Sciences, Xiamen University, Xiamen 361005, China email: rirongyuan@stu.xmu.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we study a class of second order fully nonlinear elliptic equations containing gradient terms on compact Hermitian manifolds and obtain a priori estimates under proper assumptions close to optimal. The analysis developed here should be useful to deal with other Hessian equations containing gradient terms in other contexts.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2018

References

[1] Aubin, T., Equations du type Monge-Ampère sur les varietes Kaähleriennes compactes. C. R. Math. Acad. Sci. Paris 283(1976), no. 3, 119121.Google Scholar
[2] Blocki, Z., On uniform estimate in Calabi-Yau theorem. Sci. China Ser. A. 48(2005), 244247. http://dx.doi.org/10.1007/BF02884710 Google Scholar
[3] Blocki, Z., A gradient estimate in the Calabi-Yau theorem. Math. Ann. 344(2009), 317327. http://dx.doi.Org/10.1007/s00208-008-0307-3 Google Scholar
[4] Boyer, C. and Galicki, K., Sasakian geometry. Oxford University Press, Oxford, 2008.Google Scholar
[5] Boyer, C., Galicki, K., and Kollar, J., Einstein metrics on spheres. Ann. of Math. 162(2005), no. 1, 557580. http://dx.doi.Org/10.4007/annals.2005.162.557 Google Scholar
[6] Caffarelli, L., Kohn, J., Nirenberg, L., and Spruck, J., The Dirichlet problem for nonlinear. second-order elliptic equations. II. Complex Monge-Ampere, and uniformly elliptic, equations. Comm. Pure Appl. Math. 38(1985), 209252. http://dx.doi.Org/10.1002/cpa.3160380206 Google Scholar
[7] Calabi, E., The space of Kähler metrics. Proc. Internat. Congress Math. Amsterdam, vol. 2(1954), 206207.Google Scholar
[8] Chen, X.-X., A new parabolic flow in Kähler manifolds. Comm. Anal. Geom. 12(2004), 837852. http://dx.doi.org/10.4310/CAC.2004.v12.n4.a4 Google Scholar
[9] Chen, X.-X., The space of Kähler metrics. J. Differential Geom. 56(2000), no. 2, 189234. http://dx.doi.Org/10.4310/jdg/1090347643 Google Scholar
[10] Donaldson, S.-K., Symmetric spaces, Kähler geometry and Hamiltonian dynamics. In: Northern California symplectic geometry seminar. Amer. Math. Soc. Transl. Ser. 2, 196. American Mathematical Society, Providence, RI. 1999, pp. 1333. http://dx.doi.Org/10.1090/trans2/196/02 Google Scholar
[11] Donaldson, S.-K., Moment maps and diffeomorphisms. Asian J. Math. 3(1999), no. 3, 115. http://dx.doi.org/10.4310/AJM.1999.v3.n1.a1 Google Scholar
[12] Evans, L., Classical solutions of fully nonlinear convex, second order elliptic equations. Comm. Pure Appl. Math. 35(1982), no. 3, 333363. http://dx.doi.Org/10.1002/cpa.3160350303 Google Scholar
[13] Fang, H. and Lai, M.-J., On the geometric flows solving Kaählerian inverse σk equations. Pacific J. Math. 258(2012), no. 2, 291304. http://dx.doi.org/10.2140/pjm.2012.258.291 Google Scholar
[14] Fang, H., Lai, M.-J., and Ma, X.-N., On a class of fully nonlinear flows in Kähler geometry. J. Reine Angew. Math. 653(2011), 189220. http://dx.doi.Org/10.1515/CRELLE.2011.027 Google Scholar
[15] Fu, J.-X., On non-Kähler Calabi-Yau threefolds with balanced metrics. In: Proceedings of the International Congress of Mathematicians. II. Hindustan Book Agency, New Delhi, 2010, pp. 705716.Google Scholar
[16] Futaki, A., Ono, H., and Wang, G.-F., Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds. J. Differential Geom. 83(2009), no. 3, 585635. http://dx.doi.Org/10.4310/jdg/1264601036 Google Scholar
[17] Gauntlett, J., Martelli, D., Sparks, J., and Waldram, D., A new infinite class of Sasaki-Einstein manifolds. Adv. Tneor. Math. Phys. 8(2004), no. 6, 9871000. http://dx.doi.org/10.4310/ATMP.2004.v8.n6.a3 Google Scholar
[18] Gauduchon, P., La 1-forme de torsion d'une variété hermitienne compacte. Math. Ann. 267(1984), 495518. http://dx.doi.org/10.1007/BF01455968 Google Scholar
[19] Godlinski, M., Kopczynski, W., and Nurowski, P., Locally Sasakian manifolds. Classical Quantum Gravity 17(2000), no. 18, 105115.Google Scholar
[20] Guan, B., The Dirichlet problem for complex Monge-Ampère equations and regularity of the pluri-complex Green function. Comm. Anal. Geom. 6(1998), no. 4, 687703. http://dx.doi.org/10.4310/CAC.1998.v6.n4.a3 Google Scholar
[21] Guan, B., Second order estimates and regularity for fully nonlinear elliptic equations on Riemannian manifolds. Duke Math. J. 163(2014), no. 8, 14911524. http://dx.doi.org/10.1215/00127094-2713591 Google Scholar
[22] Guan, B. and Li, Q., The Dirichlet problem for a complex Monge-Ampère type equation on Hermitian manifolds. Adv. Math. 246(2013), 351367. http://dx.doi.org/10.1016/j.aim.2O13.07.006 Google Scholar
[23] Guan, B. and Sun, W., On a class of fully nonlinear elliptic equations on Hermitian manifolds. Calc. Var. Partial Differential Equations. 54(2015), no. 1, 901916. http://dx.doi.Org/10.1007/s00526-014-0810-1 Google Scholar
[24] Guan, B. and Spruck, J., Boundary-value problems on 𝕊n for surfaces of constant Gauss curvature. Ann. of Math. 138(1993), no. 3, 601624. http://dx.doi.org/10.2307/2946558 Google Scholar
[25] Guan, P.-F. and Zhang, X., A geodesic equation in the space of Sasaian metrics. Adv. Lect. Math., 17. International Press, Somerville, 2011.Google Scholar
[26] Guan, P.-F. and Zhang, X., Regularity of the geodesic equation in the space of Sasakian metrics. Adv. Math. 230(2012), no. 1, 321371. http://dx.doi.Org/10.1016/j.aim.2O11.12.002 Google Scholar
[27] Hoffman, D., Rosenberg, H., and Spruck, J., Boundary value problems for surfaces of constant Gauss curvature. Comm. Pure Appl. Math. 45(1992), no. 8, 10511062. http://dx.doi.org/10.1002/cpa.3160450807Google Scholar
[28] Krylov, N.-V., Boundedly inhomogeneous elliptic andparabolic equations in a domain. (Russian). Izv. Akad. Nauk SSSR Ser. Mat. Ser. 47(1983), no. 1, 75108.Google Scholar
[29] Mabuchi, T., Some symplectic geometry on Kähler manifolds. I. Osaka J. Math. 24(1987), no. 2, 227252.Google Scholar
[30] Martelli, D. and Sparks, J., Toric geometry, Sasaki-Einstein manifolds and a new infinite class of AdS/CFT duals. Comm. Math. Phys. 262(2006), no. 1, 5189. http://dx.doi.org/10.1007/s00220-005-1425-3 Google Scholar
[31] Martelli, D., Sparks, J. and Yau, S.-T., Sasaki-Einstein manifolds and volume minimisation. Comm. Math. Phys. 280(2008), no. 3, 611673. http://dx.doi.Org/10.1007/s00220-008-0479-4 Google Scholar
[32] Phong, D.-H., Picard, S., and Zhang, X.-W., On estimates for the Fu-Yau generalization of a Strominger system. arxiv:1507.08193Google Scholar
[33] Phong, D.-H., Picard, S., and Zhang, X.-W., The Fu-Yau equation with negative slope parameter. arxiv:1 602.08838.Google Scholar
[34] Phong, D.-H., Picard, S., and Zhang, X.-W., The anomaly flow and the Fu-Yau equation. arxiv:1610.02740Google Scholar
[35] Popovici, D., Aeppli cohomology classes associated with Gauduchon metrics on compact complex manifolds. Bull. Soc. Math. France 143(2015), no. 4, 763800. http://dx.doi.Org/10.24033/bsmf.2704 Google Scholar
[36] Semmes, S., Complex Monge-Ampère and symplectic manifolds. Amer. J. Math. 114(1992), no. 3, 495550. http://dx.doi.org/10.2307/2374768 Google Scholar
[37] Song, J. and Weinkove, B., On the convergence and singularities ofthef-Flow with applications to the Mabuchi energy. Comm. Pure Appl. Math. 61(2008), no. 2, 210229. http://dx.doi.Org/10.1OO2/cpa.2O1 82 Google Scholar
[38] Sun, W., On a class of fully nonlinear elliptic equations on closed Hermitian manifolds. J. Geom. Anal. 26(2016), no. 3, 24592473. http://dx.doi.org/10.1007/s12220-015-9634-2 Google Scholar
[39] Sun, W., Generalized complex Monge-Ampere type equations on closed Hermitian manifolds. arxiv:1412.8192Google Scholar
[40] Székelyhidi, G., Fully non-linear elliptic equations on compact Hermitian manifolds. arxiv:1 501.02762.Google Scholar
[41] Székelyhidi, G., Tosatti, V., and Weinkove, B., Gauduchon metrics with prescribed volume form. arxiv:1 503.04491Google Scholar
[42] Taylor, M.-E., Partial differential equations. I. Texts in Applied Mathematics, 23. Springer-Verlag, New York, 1996.Google Scholar
[43] Tian, G. and Yau, S.-T., Complete Kahler manifolds with zero Ricci curvature. I. J. Amer. Math. Soc. 3(1990), no. 3, 579609. http://dx.doi.org/10.2307/1990928 Google Scholar
[44] Tosatti, V. and Weinkove, B., Hermitian metrics, (n - 1, n - 1)-forms and Monge-Ampere equations. arxiv:1310.6326Google Scholar
[45] Weinkove, B., Convergence of the f-flow on Kahler surfaces. Comm. Anal. Geom. 12(2004), 949965. http://dx.doi.org/10.4310/CAC.2004.v12.n4.a8 Google Scholar
[46] Weinkove, B., On the J-flow in higher dimensions and the lower boundedness of the Mabuchi energy. J. Differential Geom. 73(2006), 351358. http://dx.doi.Org/10.4310/jdg/1146169914 Google Scholar
[47] Yau, S.-T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Comm. Pure Appl. Math. 31(1978), no. 3, 339411. http://dx.doi.org/10.1002/cpa.3160310304 Google Scholar