Skip to main content Accessibility help
×
Home

Goursats Theorem and the Zassenhaus Lemma

  • Joachim Lambek

Extract

In this paper we study generalized homomorphisms between two algebras, namely the binary relations whose graphs are subalgebras of the direct product of the given algebras. In 1897 Goursat proved that every subgroup of the direct product of two groups is determined by an isomorphism between factor groups of subgroups of the given groups (10, §§11, 12; 25, pp. 15, 16). A like result is here shown for a general class of algebras, including loops and quasigroups, by a method due to Riguet (22). This result is used to obtain general forms of the Zassenhaus lemma and the Jordan- Hälder-Schreier theorem for normal series (26, §9).

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Goursats Theorem and the Zassenhaus Lemma
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Goursats Theorem and the Zassenhaus Lemma
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Goursats Theorem and the Zassenhaus Lemma
      Available formats
      ×

Copyright

References

Hide All
1. Bates, G. E. and Kiokemeister, F., A note on homomorphic mappings of quasigroups etc., Bull. Amer. Math. Soc, 54 (1948), 1180-1185.
2. Birkhofr, G., Lattice Theory (rev. ed., New York, 1948).
3. Birkhofr, G., Universal algebra, Proc. 1st Can. Math. Congr., (1949), 310-326.
4. Dilworth, R. P., The structure of relatively complemented lattices, Ann. Math., 51 (1950), 348-359.
5. Dubreil, P. et Dubreil-Jacotin, M.-L., Théorie algébrique des relations d'équivalence, J. de Math., 104 (1939), 63-95.
6. Dresher, M. and Ore, O., Theory of multigroups, Amer. J. Math., 60 (1938), 705-753.
7. Evans, T., Homomorphisms of non-associative systems, J. Lond. Math. Soc, 24 (1949), 254-260.
8. Goldie, A. W., The Jordan-Hölder-Schreier theorem for general abstract algebras, Proc. London Math. Soc, 52 (1950), 107-131.
9. Goldie, A. W., The scope of the Jordan-Hölder-Schreier theorem in abstract algebra, Proc. London Math. Soc. (3), 2 (1952), 349368.
10. Goursat, É., Sur les substitutions orthogonales etc., Ann. sci. éc. norm. sup. (3), 6 (1889), 9-102.
11. Kelley, J. L., General Topology (New York, 1955).
12. Kiokemeister, F., A theory of normality for quasigroups, Amer. J. Math. 70 (1948), 99-106.
13. Kuntzmann, J., Contributions à l'étude des systèmes multiformes, Ann. Fac Sci. Univ. Toulouse (4) 3 (1939), 155-193.
14. Kuratowski, C., Topologie I(Warszawa, 1952).
15. Kurosh, A. G., The Theory of Groups I (New York, 1955).
16. Lambek, J., Groups and herds, abstract 145t, Bull. Amer. Math. Soc, 61 (1955), 58.
17. Lorenzen, P., Ueber die Korrespondenzen einer Struktur, Math. Zeitschr., 60 (1954), 6165.
18. MacLane, S., Duality for groups, Bull. Amer. Math. Soc, 56 (1950), 485-516.
19.Mal'cev, A. I., On the general theory of algebraic systems, Mat. Sbornik N.S., 35 (1954), 3-20.
20. Murdoch, D. C., Quasigroups which satisfy certain generalized associative laws, Amer. J. Math., 61 (1939), 509-522.
21. Pontrjagin, L., Topological Groups (Princeton, 1946).
22. Riguet, J., Relations binaires etc., Bull. Soc. Math. France, 76 (1948), 114-155.
23. Riguet, J.,Quelques propriétés des relations difonctionelles, C.R. Acad. Sci. Paris, 230 (1950), 1999-2000.
24. Smiley, M. F.,Notes on left divisor systems with left units, Amer. J. Math., 74 (1952), 679- 682.
25. Threlfall, W. and Seifert, H., Bewegungsgruppen des dreidimensionalen spharischen Raumes, Math. Ann., 104 (1931), 1-70.
26. Zassenhaus, H., The Theory of Groups (New York, 1949).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Goursats Theorem and the Zassenhaus Lemma

  • Joachim Lambek

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed