Skip to main content Accessibility help
×
Home

Eigenvarieties for Cuspforms Over PEL Type Shimura Varieties With Dense Ordinary Locus

  • Riccardo Brasca (a1)

Abstract

Let $p\,>\,2$ be a prime and let $X$ be a compactified PEL Shimura variety of type $\left( \text{A} \right)$ or $\left( \text{C} \right)$ such that $p$ is an unramified prime for the PEL datum and such that the ordinary locus is dense in the reduction of $X$ . Using the geometric approach of Andreatta, Iovita, Pilloni, and Stevens, we define the notion of families of overconvergent locally analytic $p$ -adic modular forms of Iwahoric level for $X$ . We show that the system of eigenvalues of any finite slope cuspidal eigenform of Iwahoric level can be deformed to a family of systems of eigenvalues living over an open subset of the weight space. To prove these results, we actually construct eigenvarieties of the expected dimension that parameterize finite slope systems of eigenvalues appearing in the space of families of cuspidal forms.

Copyright

References

Hide All
[AIP15a] Andreatta, F., Iovita, A., and Pilloni, V., p-adic famiües of Hubert modular cuspforms. To appear in Astérisque. Available at http://users.mat.unimi.it/users/andreat/,2015.http://dx.doi.Org/10.4007/annals.2015.181.2.5
[AIP15b] Andreatta, F., p-adic famiües of Siegel modular cuspforms, Ann. Math. (2) 181(2015), no. 2, 623697. http://dx.doi.Org/10.4007/annals.2015.181.2.5
[AIS14] Andreatta, F., Iovita, G., and Stevens, G. , Overconvergent modular sheaves and modular forms for GL2/F. Israel J. Math. 201(2014), no. 1, 299359. http://dx.doi.Org/10.1007/s11856-014-1045-8
[Bral3] Brasca, R., p-adic modular forms of non-integral weight over Shimura curves. Compos. Math. 149(2013), no. 1, 3262. http://dx.doi.Org/10.1112/S0010437X12000449
[BR15] Brasca, R. and Rosso, G., Eigenvarieties for non-cuspidal automorphic forms over certain PEL type Shimura varieties. preprint, 2015.
[BSP15] Bijakowski, S., Stroh, B., and Pilloni, V. , Classicité deformes modulaires surconvergentes. preprint, available at http://perso.ens-lyon.fr/vincent.pilloni/. To appear in Annais of Math., 2015.
[BuzO7] Buzzard, K., Eigenvarieties, L-functions and Galois representations. London Math. Soc.Lecture Note Ser. 320, 2007, pp. 59120.
[Chell] Chenevier, G., On the infinite fern of Galois representations ofunitary type. Ann. Sei. Ec.Norm. Super. (4) 44(2011), no. 6, 9631019.
[EmeO6] Emerton, M., On the Interpolation of Systems of eigenvalues attached to automorphic Hecke eigenforms. Invent. Math. 164(2006), no. 1,184. http://dx.doi.org/10.1007/s00222-005-0448-x
[FarlO] Fargues, L., Lafiltration de Harder-Narasimhan des Schemas en groupes finis et plats. J. Reine Angew. Math. 645 (2010), 139. http://dx.doi.Org/10.1515/crelle.2O10.058
[Farll] Fargues, L., Lafiltration canonique des points de torsion des groupes p-divisibles. Ann. Sei. Éc.Norm. Supér. (4) 44(2011), no. 6, 905961, With collaboration of Yichao Tian
[Jonll] Jones, O. T. R., An analogue ofthe BGG resolution for locally analytic prineipal series. J. Number Theory 131(2011), no. 9,16161640. http://dx.doi.Org/10.1016/j.jnt.2O11.02.010
[KL05] Kisin, M. and Lai, K. F., Overconvergent Hilbert modular forms. Amer. J. Math. 127(2005), no. 4, 735783. http://dx.doi.org/10.1353/ajm.2005.0027
[Kot92] Kottwitz, R. E., Points on some Shimura varieties overfinitefields. J. Amer. Math. Soc. 5(1992), no. 2, 373444. http://dx.doi.org/10.1090/S0894-0347-1992-1124982-1
[Lan] Lan, K.-W., Compactifications of PEL-type Shimura varieties and Kugafamilies with ordinary loci. preprint. Available at http://math.umn.edu/∼kwlan.
[Lanl3] Lan, K.-W., Arithmetic compactifications of PEL-type Shimura varieties. London Mathematical Society Monographs Series 36, Princeton University Press, Princeton, NJ, 2013.
[Lüt74] Lütkebohmert, W., Der Satz von Remmert-Stein in der nichtarchimedischen Funktionentheorie. Math. Z. 139(1974), 6984. http://dx.doi.org/!0.1007/BF011/94146
[MT15] Mok, C. P. and Tan, F., Overconvergent families ofSiegel-Hilbert modular forms. Canad. J. Math. 67(2015), no. 4, 893922. http://dx.doi.Org/10.4153/CJM-2O14-017-9
[PapOO] Pappas, G., On the arithmetic moduli schemes ofPEL Shimura varieties. J. Algebraic Geom. 9(2000), no. 3, 577605.
[Pill3] Pilloni, V., Overconvergent modular forms. Ann. Inst. Fourier (Grenoble) 63(2013), no. 1, 219239. http://dx.doi.org/10.5802/aif.2759
[RZ96] Rapoport, M. and Zink, T., Period Spaces for p-divisible groups. Ann. Math. Stud. 141, Princeton University Press, Princeton, NJ, 1996.
[Schl5] Scholze, P., On torsion in the cohomology oflocally Symmetrie varieties. Ann. Math. (2) 182(2015), no. 3, 9451066. http://dx.doi.org/10.4007/annals.2015.182.3.3
[StrlO] Stroh, B., Compactification de Varietes de Siegel auxplaces de mauvaise reduetion. Bull. Soc. Math. France 138(2010), no. 2, 259315.
[Urbll] Urban, E., Eigenvarieties for reduetive groups. Ann. of Math. (2) 174(2011), no. 3,16851784. http://dx.doi.Org/10.4007/annals.2011.174.3.7
[Wed99] Wedhorn, T., Ordinariness in good reduetions of Shimura varieties ofPEL-type. Ann. Sei.Ecole Norm. Sup. (4) 32(1999), no. 5, 575618.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Related content

Powered by UNSILO

Eigenvarieties for Cuspforms Over PEL Type Shimura Varieties With Dense Ordinary Locus

  • Riccardo Brasca (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.