Skip to main content Accessibility help
×
Home

Coefficient Behavior of a Class of Meromorphic Functions

  • J. W. Noonan (a1)

Extract

With , denote by Λ k the class of functions ƒ of the form

which are analytic in and which map y onto the complement of a domain with boundary rotation at most . It is known [2] that ƒ ∈ Λk if and only if there exist regular starlike functions s1 and s2, with

such that

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Coefficient Behavior of a Class of Meromorphic Functions
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Coefficient Behavior of a Class of Meromorphic Functions
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Coefficient Behavior of a Class of Meromorphic Functions
      Available formats
      ×

Copyright

References

Hide All
1. Hille, E., Analytic function theory, Vol. II (Ginn, Boston, 1962).
2. Noonan, J. W., Meromorphic functions of bounded boundary rotation, Michigan Math. J. 18 (1971), 343352.
3. Noonan, J. W., Asymptotic behavior of functions with bounded boundary rotation, Trans. Amer. Math. Soc. 164 (1972), 397410.
4. Noonan, J. W., On close-to-convex functions of order 0, Pacific J. Math. 44 (1973), 263280.
5. Noonan, J. W., Curvature and radius of curvature for functions with bounded boundary rotation, Can. J. Math. 25 (1973), 10151023.
6. Pommerenke, Ch., On starlike and convex functions, J. London Math. Soc. 37 (1962), 209224.
7. Pommerenke, Ch., On close-to-convex analytic functions, Trans. Amer. Math. Soc. 114 (1965), 176186.
8. Thomas, D. K., On the coefficients of functions with bounded boundary rotation, Proc. Amer. Math. Soc. 36 (1972), 123129.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Coefficient Behavior of a Class of Meromorphic Functions

  • J. W. Noonan (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed