Skip to main content Accessibility help

Almost Disjointness Preservers

  • Timur Oikhberg (a1) and Pedro Tradacete (a2)


We study the stability of disjointness preservers on Banach lattices. In many cases, we prove that an “almost disjointness preserving” operator is well approximable by a disjointness preserving one. However, this approximation is not always possible, as our examples show.



Hide All
[1] Abramovich, Y., Operators preserving disjointness on rearrangement invariant spaces. Pacific J. Math. 148(1991) 201206.
[2] Abramovich, Y. and Aliprantis, C., An invitation to operator theory. Graduate Studies in Mathematics 50. American Mathematical Society, Providence, RI, 2002.http://dx.doi.Org/10.109O/gsm/O5O
[3] Aliprantis, C. and Burkinshaw, O., Positive operators. Springer, Dordrecht, 2006.
[4] Alspach, D., Small into isomorphisms on Lp spaces. Illinois J. Math. 27(1983), 300314.
[5] Araujo, J., Linear biseparating maps between spaces of vector-valued differentiable functions and automatic continuity. Adv. Math. 187(2004), 488520.http://dx.doi.Org/10.1016/j.aim.2003.09.007
[6] Araujo, J. and Font, J., Stability of weighted composition operators between spaces of continuous functions. J. London Math. Soc. 79(2009), 363376.http://dx.doi.Org/10.1112/jlms/jdnO79
[7] Araujo, J., Stability of weighted point evaluation functionals. Proc. Amer. Math. Soc. 138(2010), 31633170.http://dx.doi.Org/10.1090/S0002-9939-10-10214-7
[8] Araujo, J., On the stability index for weighted composition operators. J. Approx. Theory 162(2010), 21362148.http://dx.doi.Org/10.1016/j.jat.2O10.06.006
[9] Arendt, W., Spectral properties ofLamperti operators. Indiana Univ. Math. J. 32(1983), 199215. http://dx.doi.Org/10.1512/iumj.1 983.32.32018
[10] Bennett, C. and Sharpley, R. Interpolation of operators. Pure and Applied Mathematics 129. Academic Press, Boston, MA, 1988.
[11] Carothers, N. L., A short course on Banach space theory. London Mathematical Society Student Texts 64. Cambridge University Press, Cambridge, 2005.
[12] Diestel, J., Geometry of Banach spaces-selected topics. Lecture Notes in Mathematics 485. Springer-Verlag, Berlin-New York, 1975
[13] Dolinar, G., Stability of disjointness preserving mappings. Proc. Amer. Math. Soc. 130(2002), 129138.http://dx.doi.Org/10.1090/S0002-9939-01-06023-3
[14] L. E.Dor, , On projections in L1. Ann. of Math. (2) 102(1975), no. 3, 463474.http://dx.doi.Org/10.2307/1971039
[15] Godefroy, G., Renormings of Banach spaces. In: Handbook of the geometry of Banach spaces, Vol. I. North-Holland, Amsterdam, 2001, pp. 781835. http://dx.doi.Org/10.1016/S1 874-5849(01)80020-6
[16] Huijsmans, C.B., Disjointness preserving operators on Banach lattices. In: Operator theory in function spaces and Banach lattices. Oper. Theory Adv. Appl. 75. Birkhäuser, Basel, 1995, pp. 173189.
[17] Kantrowitz, R. and Neumann, M., Disjointness preserving and local operators on algebras of differentiable functions. Glasg. Math. J. 43(2001), 295309.http://dx.doi.Org/10.1017/S001 7089501020134
[18] Kantrowitz, R., Approximation by weighted composition operators on C(X) Math. Proc. R. Ir. Acad. 108(2008), 119135.http://dx.doi.Org/10.3318/PRIA.2008.108.2.119
[19] Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces. I. Ergebnisse der Mathematik und ihrer Grenzgebiete 92. Springer-Verlag, Berlin, 1977.
[20] Lindenstrauss, J. Classical Banach spaces. II. Ergebnisse der Mathematik und ihrer Grenzgebiete 97. Springer-Verlag, Berlin, 1979.
[21] 5, Biseparating maps on generalized Lipschitz spaces. Studia Math. 196(2010), 2340.
[22] Lin, Y.-F. and Wong, N.-C., The structure of compact disjointness preserving operators on continuous functions. Math. Nachr. 282(2009), 10091021.http://dx.doi.Org/10.1OO2/mana.2OO610786
[23] Meyer-Nieberg, P., Banach lattices. Springer-Verlag, Berlin, 1991.
[24] Milman, V. and Schechtman, G., Asymptotic theory of finite-dimensional normed spaces. Lecture Notes in Mathematics 1200. Springer-Verlag, Berlin, 1986.
[25] Oikhberg, T., Peralta, A., and Puglisi, D., Automatic continuity of orthogonality or disjointness preserving bijections. Rev. Mat. Complut. 26(2013), 5788.http://dx.doi.Org/10.1007/s13163-011-0089-0
[26] Schaefer, H. H., Banach lattices and positive operators. Die Grundlehren der mathematischen Wissenschaften 215. Springer-Verlag, Berlin (1974).
[27] Schep, A., Krivine's theorem and the indices of a Banach lattice. In: Positive operators and semigroups on Banach lattice (Curacao, 1990). Acta Appl. Math. 27(1992), 111121.
[28] Schwarz, H.-U., Banach lattices and operators. Teubner-Texte zur Mathematik 71. Teubner, Leipzig, 1984.
[29] Wickstead, A., Regular operators between Banach lattices. In: Positivity. Trends Math. Birkhäuser, Basel, 2007, pp. 255279.http://dx.doi.Org/10.1007/978-3-7643-8478-4_9
MathJax is a JavaScript display engine for mathematics. For more information see


Related content

Powered by UNSILO

Almost Disjointness Preservers

  • Timur Oikhberg (a1) and Pedro Tradacete (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.