Skip to main content Accessibility help
×
Home

Albert algebras over rings and related torsors

  • Seidon Alsaody (a1)

Abstract

We study exceptional Jordan algebras and related exceptional group schemes over commutative rings from a geometric point of view, using appropriate torsors to parametrize and explain classical and new constructions, and proving that over rings, they give rise to nonisomorphic structures.

We begin by showing that isotopes of Albert algebras are obtained as twists by a certain $\mathrm F_4$ -torsor with total space a group of type $\mathrm E_6$ and, using this, that Albert algebras over rings in general admit nonisomorphic isotopes even in the split case, as opposed to the situation over fields. We then consider certain $\mathrm D_4$ -torsors constructed from reduced Albert algebras, and show how these give rise to a class of generalised reduced Albert algebras constructed from compositions of quadratic forms. Showing that this torsor is nontrivial, we conclude that the Albert algebra does not uniquely determine the underlying composition, even in the split case. In a similar vein, we show that a given reduced Albert algebra can admit two coordinate algebras which are nonisomorphic and have nonisometric quadratic forms, contrary, in a strong sense, to the case over fields, established by Albert and Jacobson.

Copyright

Corresponding author

Footnotes

Hide All

An extensive part of this work was done while the author was a postdoctoral fellow at Institut Camille Jordan (Lyon, France), supported by the grant KAW 2015.0367 from the Knut and Alice Wallenberg Foundation. Part of this work was done while the author was partially supported by PIMS at the University of Alberta.

Footnotes

References

Hide All
[ALM]Alberca Bjerregaard, P., Loos, O., and Martín González, C., Derivations and automorphisms of Jordan algebras in characteristic two. J. Algebra 285(2005), 146181.
[AJ]Albert, A. A. and Jacobson, N., On reduced exceptional simple Jordan algebras. Ann. Math. 66(1957), 400417.
[AG]Alsaody, S. and Gille, P., Isotopes of octonion algebras, ${\boldsymbol{G}}_2$-torsors and triality. Adv. Math. 343(2019), 864909.
[BS]Bott, R. and Samelson, H., Applications of the theory of Morse to symmetric spaces. Amer. J. Math. 80(1958), 9641029.
[CTS]Colliot-Thélène, J.-L. and Sansuc, J.-J., Fibrés quadratiques et composantes connexes réelles. Math. Ann. 244(1979), 105134.
[DG]Demazure, M. and Gabriel, P., Groupes algébriques. Masson, Paris, 1970.
[SGA3]Demazure, M. and Grothendieck, A. (eds.), Séminaire de Géométrie algébrique de l’I. H. E. S., 1963–1964, schémas en groupes. Lecture Notes in Math, 151, Springer, New York, 1970, pp. 151153.
[G1]Gille, P., Octonion algebras over rings are not determined by their norms. Canad. Math. Bull. 57(2014), 303309.
[G2]Gille, P., Sur la classification des schémas en groupes semisimples, “Autour des schémas en groupes, III”. Panoramas et Synthèses 47(2015), 39110.
[EGAIV]Grothendieck, A. (avec la collaboration de J. Dieudonné), Eléments de Géométrie Algébrique IV. Publications mathématiques de l’I.H.É.S. nos. 20, 24, 28 and 32, 1964–1967.
[J1]Jacobson, N., Some groups of transformations defined by Jordan algebras II. J. Reine Angew. Math. 204(1960), 7498.
[J2]Jacobson, N., Basic algebra I. Freeman, San Francisco, CA, 1974.
[K]Knus, M.-A., Quadratic and Hermitian forms over rings. Grundlehren der Matematischen Wissenschaften, 294, Springer-Verlag, New York, NY, 1991.
[KMRT]Knus, M.-A., Merkurjev, A., Rost, M., and Tignol, J.-P., The book of involutions. AMS Colloquium Publications, 44, Amer. Math. Soc., Providence, RI, 1998.
[L]Loos, O., On algebraic groups defined by Jordan pairs. Nagoya Math. J. 74(1979), 2366.
[Mc]McCrimmon, K., Axioms for inversion in Jordan algebras. J. Algebra 47(1977), 201222.
[MZ]McCrimmon, K. and Zelmanov, E., The structure of strongly prime quadratic Jordan algebras. Adv. Math. 69(1988), 133222.
[Mi]Mimura, M., The homotopy groups of lie groups of low rank. J. Math. Kyoto Univ. 6(1967), 131176.
[P]Petersson, H. P., A survey on Albert algebras. Transform. Groups 24(2019), 219278.
[PR]Petersson, H. P. and Racine, M., Octonions and Albert algebras over commutative rings. Monograph in progress, 2018.
[Se]Serre, J.-P., Quelques calculs de groupes d’homotopie. C. R. Acad. Sci. Paris 236(1953), 24752477.
[Sp]Springer, T. A., Jordan algebras and algebraic groups. Ergebnisse der Mathematik un ihre Grenzgebiete, Band 75, Springer-Verlag, New York, NY, 1973.
[SV]Springer, T. A. and Veldkamp, F. D., Octonion algebras, Jordan algebras and exceptional groups. Springer Monographs in Mathematics, Springer-Verlag, New York, NY, 2000.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Albert algebras over rings and related torsors

  • Seidon Alsaody (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.