Skip to main content Accessibility help
×
×
Home

Paramedics assessing Elders at Risk for Independence Loss (PERIL): Derivation, Reliability and Comparative Effectiveness of a Clinical Prediction Rule

  • Jacques S. Lee (a1) (a2), P. Richard Verbeek (a1) (a2), Michael J. Schull (a1) (a2), Lisa Calder (a3) (a4), Ian G. Stiell (a3) (a4), John Trickett (a4), Laurie J. Morrison (a2) (a5), Michael Nolan (a6), Brian H. Rowe (a7) (a8), Sunil Sookram (a7), David Ryan (a9), Alex Kiss (a1) and Gary Naglie (a10) (a11)...

Abstract

Objectives

We conducted a program of research to derive and test the reliability of a clinical prediction rule to identify high-risk older adults using paramedics’ observations.

Methods

We developed the Paramedics assessing Elders at Risk of Independence Loss (PERIL) checklist of 43 yes or no questions, including the Identifying Seniors at Risk (ISAR) tool items. We trained 1,185 paramedics from three Ontario services to use this checklist, and assessed inter-observer reliability in a convenience sample. The primary outcome, return to the ED, hospitalization, or death within one month was assessed using provincial databases. We derived a prediction rule using multivariable logistic regression.

Results

We enrolled 1,065 subjects, of which 764 (71.7%) had complete data. Inter-observer reliability was good or excellent for 40/43 questions. We derived a four-item rule: 1) “Problems in the home contributing to adverse outcomes?” (OR 1.43); 2) “Called 911 in the last 30 days?” (OR 1.72); 3) male (OR 1.38) and 4) lacks social support (OR 1.4). The PERIL rule performed better than a proxy measure of clinical judgment (AUC 0.62 vs. 0.56, p=0.02) and adherence was better for PERIL than for ISAR.

Conclusions

The four-item PERIL rule has good inter-observer reliability and adherence, and had advantages compared to a proxy measure of clinical judgment. The ISAR is an acceptable alternative, but adherence may be lower. If future research validates the PERIL rule, it could be used by emergency physicians and paramedic services to target preventative interventions for seniors identified as high-risk.

Objectifs

Les auteurs ont mené un programme de recherche afin de dériver une règle de prévision clinique et d’en vérifier la fiabilité, règle qui permettrait de reconnaître les personnes âgées fortement prédisposées à la perte d’autonomie à l’aide des observations des ambulanciers paramédicaux.

Méthode

Les auteurs ont d’abord élaboré une liste de vérification, la Paramedics assessing Elders at Risk of Independence Loss (PERIL), qui comprenait 43 questions à répondre par oui ou par non, dont les éléments de l’outil Identifying Seniors at Risk (ISAR). Par la suite, 1185 ambulanciers paramédicaux provenant de trois services en Ontario ont été formés pour utiliser la liste de vérification, après quoi a été évaluée la fidélité interobservateurs dans un échantillon de commodité. Le principal critère d’évaluation, soit le retour au service des urgences, l’hospitalisation ou la mort en l’espace d’un mois, a été évalué à l’aide de bases de données provinciales. Enfin, les auteurs ont procédé à la dérivation d’une règle de prévision clinique à l’aide de modèles de régression logistique à plusieurs variables.

Résultats

Sur 1065 participants, 764 (71,7 %) ont fourni des données complètes. La fidélité interobservateurs était bonne ou excellente dans 40 questions sur 43. Par la suite a été dérivée une règle en quatre points : 1) Y a-t-il des problèmes à la maison qui contribuent aux résultats défavorables? (risque relatif approché [RRA] : 1,43); 2) La personne a-t-elle composé le 911 au cours des 30 derniers jours? (RRA : 1,72); 3) S’agit-il d’un homme? (RRA : 1,38); et 4) Le soutien social est-il déficient? (RRA : 1,4). La règle PERIL a donné de meilleurs résultats qu’une mesure de substitution du jugement clinique (surface sous la courbe : 0,62 contre 0,56; p=0,02) et l’observance du questionnaire était plus élevée pour la règle PERIL que pour l’outil ISAR.

Conclusions

La règle PERIL en quatre points offre une bonne fidélité interobservateurs et une bonne observance, et elle présente des avantages comparativement à la mesure de substitution du jugement clinique. L’outil ISAR est une solution de rechange acceptable, mais l’observance peut être plus faible que pour la règle PERIL. Si la validité de la règle PERIL était confirmée plus tard dans la recherche, elle pourrait être utilisée par les médecins d’urgence et les services ambulanciers paramédicaux pour cibler des interventions préventives chez les personnes âgées considérées comme fortement prédisposées à la perte d’autonomie.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Paramedics assessing Elders at Risk for Independence Loss (PERIL): Derivation, Reliability and Comparative Effectiveness of a Clinical Prediction Rule
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Paramedics assessing Elders at Risk for Independence Loss (PERIL): Derivation, Reliability and Comparative Effectiveness of a Clinical Prediction Rule
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Paramedics assessing Elders at Risk for Independence Loss (PERIL): Derivation, Reliability and Comparative Effectiveness of a Clinical Prediction Rule
      Available formats
      ×

Copyright

Corresponding author

Correspondence to: Dr. Jacques S. Lee, Sunnybrook Health Sciences Centre, BG-04, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5; Email: jacques.lee@sunnybrook.ca

References

Hide All
1. Fried, LP, Ferrucci, L, Darer, J, et al. Untangling the concepts of disability, frailty, and comorbidity: implications for improved targeting and care. J Gerontol A Biol Sci Med Sci 2004;59(3):255-263.
2. Desai, MM, Lentzner, HR, Weeks, JD. Unmet need for personal assistance with activities of daily living among older adults. Gerontologist 2001;41(1):82-88.
3. Gurley, R, Lum, N, Sande, M, et al. Persons found in their homes helpless or dead. N Engl J Med 1996;27(334(26)):1710-1716.
4. Shah, MN, Glushak, C, Karrison, TG, et al. Predictors of emergency medical services utilization by elders. Acad Emerg Med 2003;10(1):52-58.
5. Clark, MJ, FitzGerald, G. Older people’s use of ambulance services: a population based analysis. J Accid Emerg Med 1999;16(2):108-111.
6. Marks, PJ, Daniel, TD, Afolabi, O, et al. Emergency (999) calls to the ambulance service that do not result in the patient being transported to hospital: an epidemiological study. Emerg Med J 2002;19(5):449-452.
7. Weiss, SJ, Ernst, AA, Miller, P, et al. Repeat EMS transports among elderly emergency department patients. Prehosp Emerg Care 2002;6(1):6-10.
8. Bernstein, E. Repeat visits by elder emergency department patients: sentinel events. Acad Emerg Med 1997;4(6):538-539.
9. Tinetti, ME, Baker, DI, McAvay, G, et al. A multifactorial intervention to reduce the risk of falling among elderly people living in the community. N Engl J Med 1994;331(13):821-827.
10. McCusker, J, Jacobs, P, Dendukuri, N, et al. Cost-effectiveness of a brief two-stage emergency department intervention for high-risk elders: results of a quasi-randomized controlled trial. Ann Emerg Med 2003;41(1):45-56.
11. Aminzadeh, F, Dalziel, WB. Older adults in the emergency department: a systematic review of patterns of use, adverse outcomes, and effectiveness of interventions. Ann Emerg Med 2002;39(3):238-247.
12. Wilber, ST, Gerson, LW. A research agenda for geriatric emergency medicine. Acad Emerg Med 2003;10(3):251-260.
13. Miller, DK, Lewis, LM, Nork, MJ, et al. Controlled trial of a geriatric case-finding and liaison service in an emergency department. J Am Geriatr Soc 1996;44(5):513-520.
14. IICE ed. Challenges and Innovations in the Care of Older Emergency Department Patients. Montreal, Quebec, Canada: International Interdisciplinary Conference on Emergencies; 2005.
15. McCusker, J, Bellavance, F, Cardin, S, et al. Screening for geriatric problems in the emergency department: reliability and validity. Identification of Seniors at Risk (ISAR) Steering Committee. Acad Emerg Med 1998;5(9):883-893.
16. Gerson, LW, Schelble, DT, Wilson, JE. Using paramedics to identify at-risk elderly. Ann Emerg Med 1992;21(6):688-691.
17. Ball, L. Setting the scene for the paramedic in primary care: a review of the literature. Emerg Med J 2005;22(12):896-900.
18. Dixon, S, Mason, S, Knowles, E, et al. Is it cost effective to introduce paramedic practitioners for older people to the ambulance service? Results of a cluster randomised controlled trial. Emerg Med J 2009;26(6):446-451.
19. Mason, SM, Knowles, EL, Colwell, B. A randomized controlled trial to evaluate the effectiveness of community paramedic practitioners managing older people calling emergency medical services with minor acute conditions [Abstract]. Acad Emerg Med 2005;12(Suppl 1):134-135.
20. Weiss, SJ, Chong, R, Ong, M, et al. Emergency medical services screening of elderly falls in the home. Prehosp Emerg Care 2003;7(1):79-84.
21. Stiell, IG. Clinical decision rules in the emergency department. CMAJ 2000;163(11):1465-1466.
22. Grief, CL. Patterns of ED use and perceptions of the elderly regarding their emergency care: a synthesis of recent research. J Emerg Nurs 2003;29(2):122-126.
23. McCusker, J, Karp, I, Cardin, S, et al. Determinants of emergency department visits by older adults: a systematic review. Acad Emerg Med 2003;10(12):1362-1370.
24. McCusker, J, Bellavance, F, Cardin, S, et al. Detection of older people at increased risk of adverse health outcomes after an emergency visit: the ISAR screening tool. J Am Geriatr Soc 1999;47(10):1229-1237.
25. Lee, J, Verbeek, R, Morrison, L, et al. PERIL - Paramedics and Elders at Risk of Independence Loss: Agreement between paramedics in both simulated and live patient encounters. Can J Ger 2008;11(1):56 [Abstract].
26. Beveridge, R, Ducharme, J, Janes, L, et al. Reliability of the Canadian emergency department triage and acuity scale: interrater agreement. Ann Emerg Med 1999;34(2):155-159.
27. McCusker, J, Bellavance, F, Cardin, S, et al. Prediction of hospital utilization among elderly patients during the 6 months after an emergency department visit. Ann Emerg Med 2000;36(5):438-445.
28. Meldon, SW, Mion, LC, Palmer, RM, et al. A brief risk-stratification tool to predict repeat emergency department visits and hospitalizations in older patients discharged from the emergency department. Acad Emerg Med 2003;10(3):224-232.
29. Peduzzi, P, Concato, J, Kemper, E, et al. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 1996;49(12):1373-1379.
30. Hsieh, FY, Bolock, DA, Larsen, MD. A simple method of sample size calculation for linear and logistic regression. Stat Med 1998;17(14):1623-1634.
31. Cook, EF, Goldman, L. Empiric comparison of mulitvariate analytic techniques: Advantages and disadvantages of recursive paritioning analysis. J Chronic Dis 1984;37(9-10):721-731.
32. Harrell, F. Regression Modeling Strategies. New York: Springer-Verlag; 2002.
33. Efron, B, Tibshirani, RJ. An Introduction to the Bootstrap. New York: Chapman & Hall; 1993.
34. Lee, JS, Schwindt, G, Langevin, M, et al. Validation of the triage risk stratification tool to identify older persons at risk for hospital admission and returning to the emergency department. J Am Geriatr Soc 2008;56(11):2112-2117.
35. Landis, JR, Koch, GG. The measurement of observer agreement for categorical data. Biometrics 1977;33(1):159-174.
36. McNamara, RM, Rousseau, E, Sanders, AB. Geriatric emergency medicine: a survey of practicing emergency physicians. Ann Emerg Med 1992;21(7):796-801.
37. Singal, BM, Hedges, JR, Rousseau, EW, et al. Geriatric patient emergency visits. Part I: Comparison of visits by geriatric and younger patients. Ann Emerg Med 1992;21(7):802-807.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Canadian Journal of Emergency Medicine
  • ISSN: -
  • EISSN: 1481-8035
  • URL: /core/journals/canadian-journal-of-emergency-medicine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed