Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-16T19:36:31.407Z Has data issue: false hasContentIssue false

Uncovering the Brazilian Orthocentrinae (Hymenoptera: Ichneumonidae) fauna: high diversity at high elevation

Published online by Cambridge University Press:  02 August 2022

Luiza Figueiredo Camargo*
Affiliation:
Instituto de Biologia, Universidade Estadual de Campinas (IB-Unicamp), CP 6109, 13083-970Campinas, São Paulo, Brazil
Eduardo Mitio Shimbori
Affiliation:
Departamento de Entomologia e Acarologia, Escola Superior de Agricultura “Luiz de Queiroz” Universidade de São Paulo, 13418-900Piracicaba, São Paulo, Brazil
Angélica Maria Penteado-Dias
Affiliation:
Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos, CEP 13, 565-905, São Carlos, São Paulo, Brazil
*
*Corresponding author. Email: luiza.figueiredoc@gmail.com

Abstract

The Orthocentrinae is one of the least-studied groups within Ichneumonidae and possibly a major component of the tropical fauna, encompassing a rich but still obscure diversity. In this first attempt to uncover these biota in Brazil, we surveyed a restricted area within mountain chains in the southeastern region immersed in the Atlantic tropical forest, using several sampling methods along an elevational gradient. Using integrative taxonomy, we found a richness eight times higher than the current number of species known in Brazil, including 13 genera, of which 10 are new to the country. The 127 molecular taxonomic units found represent an increase of at least 50% in species for the Neotropical fauna, confirming the immense gap in taxonomic knowledge of this group in the Neotropics. Analyses of elevational gradient patterns of distribution indicated an increase in species elevational ranges with increasing elevation, supporting Rapoport’s rule. A key including all 14 genera occurring in Brazil is proposed, aiming to facilitate future taxonomic reviews and encourage research on this group. Orthocentrinae is a major component of the fauna and likely to be more diverse in wet lowland tropical forests; however, taxonomic and faunistic studies in tropical areas, including dry forests and savannahs, are needed.

Type
Research Paper
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of the Entomological Society of Canada

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Alex Smith

References

Aguirre, H., Shaw, S.R., and Rodríguez-Jiménez, A. 2018. Contrasting patterns of altitudinal distribution between parasitoid wasps of the subfamilies Braconinae and Doryctinae (Hymenoptera: Braconidae). Insect Conservation and Diversity, 11: 219229.CrossRefGoogle Scholar
Askew, R.R. and Shaw, M.R. 1986. Parasitoid communities: their size, structure and development. In Insect Parasitoids. Edited by Waage, J. and Greathead, D.. Academic Press, London, United Kingdom. Pp. 225264.Google Scholar
Broad, G.R. 2010. Status of Batakomacrus Kolarov (Hymenoptera: Ichneumonidae: Orthocentrinae), with new generic combinations and description of a new species. Zootaxa, 2394: 5168. https://dx.doi.org/10.11646/zootaxa.2394.1.4.CrossRefGoogle Scholar
Broad, G.R., Shaw, M.R., and Fitton, M.G. 2018 The ichneumonid wasps of Britain and Ireland (Hymenoptera: Ichneumonidae): their classification and biology. Volume 7, Part 12. Handbooks for the identification of British insects. Royal Entomological Society and Field Studies Council, Telford, United Kingdom.Google Scholar
Camargo, L.F., Shimbori, E.M., and Penteado-Dias, A.M. 2020. New Neotropical species of Pantisarthrus Forster, 1871 (Hymenoptera: Ichneumonidae). Zootaxa, 4728: 443452. https://doi.org/10.11646/zootaxa.4728.4.2.CrossRefGoogle Scholar
Chan, W.P., Chen, I.C., Colwell, R.K., Liu, W.C., Huang, C.Y., and Shen, S.F. 2016. Seasonal and daily climate variation have opposite effects on species elevational range size. Science, 351: 14371439.CrossRefGoogle ScholarPubMed
Colwell, R.K. 2013. EstimateS, version 9.1: statistical estimation of species richness and shared species from samples (software and user’s guide). Freeware for Windows and Mac OS. Available from: http://viceroy.eeb.uconn.edu/estimates/index.html [accessed 22 July 2020].Google Scholar
Colwell, R.K. and Hurtt, G.C. 1994. Nonbiological gradients in species richness and a spurious Rapoport effect. The American Naturalist, 144: 570595.CrossRefGoogle Scholar
Colwell, R.K. and Lees, D.C. 2000. The mid-domain effect: geometric constraints on the geography of species richness. Trends in Ecology and Evolution, 15: 7076.CrossRefGoogle ScholarPubMed
Dasch, C. 1992. The ichneumon flies of America north of Mexico. Part 12. Subfamilies Microleptinae, Helictinae, Cylloceriinae and Oxytorinae (Hymenoptera: Ichneumonidae). Memoirs of the American Entomological Institute, 52: 1470.Google Scholar
Delobel, A. and Matile, S. 1975. Un nouveau Microleptinae (Hym. Ichneumonidae) parasite de Neoempheria ombrophila, n.sp. (Dipt. Mycetophilidae) en République Centrafricaine. Bulletin de l’Institut Fondamental d’Afrique Noire, 37: 385394.Google Scholar
Fernandez-Triana, J.L., Whitfield, J.B., Rodriguez, J.J., Smith, M.A., Janzen, D.H., Hallwachs, W.D., et al. 2014 . Review of Apanteles sensu strictu (Hymenoptera, Braconidae, Microgastrinae) from Area de Conservación Guanacaste, northwestern Costa Rica, with keys to all described species from Mesoamerica. ZooKeys, 383: 1565. https://doi.org/10.3897/zookeys.383.6418.CrossRefGoogle Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit 1 from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294299.Google Scholar
Gauld, I.D. 1984. An introduction to the Ichneumonidae of Australia. British Museum (Natural History), London, United Kingdom.Google Scholar
Gauld, I.D. 1986. Latitudinal gradients in ichneumonid species richness in Australia. Ecological Entomology, 11: 155161.CrossRefGoogle Scholar
Gauld, I.D. 1987. Some factors affecting the composition of tropical ichneumonid faunas. Biological Journal of the Linnean Society, 30: 299312.CrossRefGoogle Scholar
Gauld, I.D. 1988. Evolutionary patterns of host utilization by ichneumonoid parasitoids (Hymenoptera: Ichneumonidae and Braconidae). Biological Journal of the Linnean Society, 35: 351377. https://doi.org/10.1111/j.1095-8312.1988.tb00476.x.CrossRefGoogle Scholar
Gauld, I.D. 1991. The Ichneumonidae of Costa Rica. Volume 1. Memoirs of the American Entomological Institute, 47: 1589.Google Scholar
Gauld, I.D. 1997. The Ichneumonidae of Costa Rica. Volume 2. Memoirs of the American Entomological Institute, 57: 1485.Google Scholar
Gauld, I.D. 2000. The Ichneumonidae of Costa Rica. Volume 3. Memoirs of the American Entomological Institute, 63: 1453.Google Scholar
Gauld, I.D., Godoy, C., Sithole, R., and Ugalde Gomez, J. 2002. The Ichneumonidae of Costa Rica. Volume 4. Memoirs of the American Entomological Institute, 66: 1768.Google Scholar
Gotelli, N.J. and Colwell, R.K. 2011. Estimating species richness. In Biological diversity: frontiers in measurement and assessment. Edited by Magurran, A.E. and McGill, B.J.. Oxford University Press, New York, New York, United States of America. Pp. 3954.Google Scholar
Gupta, V.K. 1988. The Ichneumonidae of the Indo–Australian area (Hymenoptera): a synoptic catalogue of the taxa described through 1985 together with bibliography, 1960–1985. Memories of American Entomological Institute, 41: 1121.Google Scholar
Humala, A.E. 2003. The ichneumonid wasps in the fauna of Russia and adjacent countries. Subfamilies Microleptinae and Oxytorinae (Hymenoptera, Ichneumonidae). Nauka, Moscow, Russia. 175 pp. [In Russian.]Google Scholar
Humala, A.E. 2010. Review of the genus Batakomacrus Kolarov, 1986 (Hymenoptera: Ichneumonidae, Orthocentrinae) with description of new species. Proceedings of the Russian Entomological Society, 81: 2938. [In Russian with English summary.]Google Scholar
Humala, A.E. 2014. Mexican species of the subgenus Dicolus Förster, genus Megastylus Schiødte (Hymenoptera: Ichneumonidae: Orthocentrinae), with descriptions of a new species. Proceedings of the Russian Entomological Society, 85: 98102.Google Scholar
Humala, A.E. 2017. New species of the genus Gnathochorisis Förster (Hymenoptera: Ichneumonidae: Orthocentrinae) from the Neotropical Region. Zootaxa, 4250: 201218.CrossRefGoogle ScholarPubMed
Humala, A.E. 2019. Mexican species of the genus Orthocentrus (Hymenoptera, Ichneumonidae: Orthocentrinae). Zootaxa. 4709: 183. https://doi.org/10.11646/zootaxa.4709.1.1.CrossRefGoogle Scholar
Humala, A.E., Choi, J.K., and Lee, J.W. 2016. A review of the genera Gnathochorisis Förster and Symplecis Förster of South Korea, with notes on Korean orthocentrines (Hymenoptera, Ichneumonidae, Orthocentrinae). ZooKeys, 56: 85104. https://doi.org/10.3897/zookeys.562.7303.Google Scholar
Humala, A.E., Kruidhofb, H.M., and Woelke, J.B. 2017. New species of Megastylus (Hymenoptera: Ichneumonidae: Orthocentrinae) reared from larvae of Keroplatidae fungus gnats (Diptera) in a Dutch orchid greenhouse. Journal of Natural History, 51: 8395. https://dx.doi.org/10.1080/00222933.2016.1257074.CrossRefGoogle Scholar
Humala, A.E. and Ruíz-Cancino, E. 2017. Two new species of the genus Eusterinx Förster (Hymenoptera: Ichneumonidae: Orthocentrinae) from Mexico. Zoosystematica Rossica, 26: 161166.CrossRefGoogle Scholar
Janzen, D.H. 1967. Why mountain passes are higher in the tropics. American Naturalist, 101: 233249.CrossRefGoogle Scholar
Janzen, D.H. 1981. The peak in North American ichneumonid species richness lies between 38º and 42º N. Ecology, 62: 532537.CrossRefGoogle Scholar
Kang, I., Chapman, E.G., Janzen, D.H., Hallwachs, W., Dapkey, T., Smith, M.A., and Sharkey, M.J. 2017. Revision of the species of Lytopylus from Area de Conservación Guanacaste, northwestern Costa Rica (Hymenoptera, Braconidae, Agathidinae). ZooKeys, 721: 93158, https://doi.org/10.3897/zookeys.721.20287.CrossRefGoogle Scholar
Klopfstein, S., Langille, B., Spasojevic, T., Broad, G.R., Cooper, S.J.B., Austin, A.D., and Niehuis, O. 2019. Hybrid capture data unravels a rapid radiation in pimpliform parasitoid wasps (Hymenoptera: Ichneumonidae: Pimpliformes). Systematic Entomology, 44: 361383. https://doi.org/10.1111/syen.12333.CrossRefGoogle Scholar
Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35: 15471549.CrossRefGoogle ScholarPubMed
Lis, J.T. and Schleif, R. 1975. Size fractionation of double-stranded DNA by precipitation with polyethylene glycol. Nucleic Acids Research, 2: 383390. https://dx.doi.org/10.1093/nar/2.3.383.CrossRefGoogle ScholarPubMed
McCain, C.M. and Knight, K.B. 2013. Elevational Rapoport’s rule is not pervasive on mountains. Global Ecology and Bio-geography, 22: 750759.CrossRefGoogle Scholar
Meierotto, S., Sharkey, M.J., Janzen, D.H., Hallwachs, W., Hebert, P.D.N., Chapman, E.G., and Smith, M.A. 2019. A revolutionary protocol to describe understudied hyperdiverse taxa and overcome the taxonomic impediment. Deutsche Entomologische Zeitschrift, 66: 119145. https://doi.org/10.3897/dez.66.34683.CrossRefGoogle Scholar
Mukai, H. and Kitajima, H. 2019 Parasitoid wasps regulate population growth of fungus gnats genus Neoempheria Osten Sacken (Diptera: Mycetophilidae) in shiitake mushroom cultivation. Biological Control, 134: 1522.CrossRefGoogle Scholar
Owen, D.F. and Owen, J. 1974. Species diversity in temperate and tropical Ichneumonidae. Nature, 249: 583584.CrossRefGoogle Scholar
Peck, R.W., Banko, P.C., Schwarzfeld, M., Euaparadorn, M., and Brinck, K.W. 2008. Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island. Biological Invasions, 10: 14411455.CrossRefGoogle Scholar
Pintor, A.F., Schwarzkopf, L., and Krockenberger, A.K. 2015. Rapoport’s Rule: do climatic variability gradients shape range extent? Ecological Monographs, 85: 643659.CrossRefGoogle Scholar
Quicke, D.L.J. 2012. We know too little about parasitoid wasp distributions to draw any conclusions about latitudinal trends in species richness body size, and biology. PLOS One, 7: e32101. https://doi.org/10.1371/journal.pone.0032101.CrossRefGoogle ScholarPubMed
Quicke, D.L.J. 2015. The braconid and ichneumonid parasitoid wasps. Wiley-Blackwell, London, United Kingdom.Google Scholar
Rohde, K., Heap, M., and Heap, D. 1993. Rapoport’s rule does not apply to marine teleosts and cannot explain latitudinal gradients in species richness. The American Naturalist, 142: 116.CrossRefGoogle Scholar
Sääksjärvi, I.E., Haataja, S., Neuvonen, S., Gauld, I.D., Jussila, R., Salo, J., and Burgos, A.M. 2004. High local species richness of parasitic wasps (Hymenoptera: Ichneumonidae; Pimplinae and Rhyssinae) from the lowland rainforests of Peruvian Amazonia. Ecological Entomology, 29: 735743.Google Scholar
Sambrook, J. and Russell, D.W. 2001. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, New York, United States of America.Google Scholar
Santos, A.M.C. and Quicke, D.L.J. 2011. Large-scale diversity patterns of parasitoid insects. Entomological Science, 14: 371382.CrossRefGoogle Scholar
Šedivý, J. and Ševčik, J. 2003. Ichneumonid (Hymenoptera: Ichneumonidae) parasitoids of fungus gnats (Diptera: Mycetophilidae): rearing records from the Czech Republic. Studia Dipterologica, 10: 153158.Google Scholar
Shapiro, B.A. and Pickering, J. 2000. Rainfall and parasitic wasp (Hymenoptera: Ichneumonidae) activity in successional forest stages at Barro Colorado Nature Monument, Panama, and La Selva Biological Station, Costa Rica. Agricultural and Forest Entomology, 2: 3947.CrossRefGoogle Scholar
Sharkey, M.J. and Chapman, E.G. 2016. Revision of Aerophilus Szépligeti (Hymenoptera, Braconidae, Agathidinae) from eastern North America, with a key to the Nearctic species. Contributions in Science, 524: 51110.CrossRefGoogle Scholar
Sharkey, M.J., Chapman, E.G., Janzen, D.H., Hallwachs, W., and Smith, M.A. 2015. Revision of Aphelagathis (Hymenoptera, Braconidae, Agathidinae, Agathidini). Zootaxa, 4000: 7389. https://doi.org/10.11646/zootaxa.4000.1.3.Google Scholar
Sharkey, M.J., Meierotto, S., Chapman, E., Janzen, D.H., Hallwachs, W., Dapkey, T., and Solis, M.A. 2018. Alabagrus Enderlein (Hymenoptera, Braconidae, Agathidinae) species of Costa Rica, with an emphasis on specimens reared from caterpillars in Area de Conservación Guanacaste. Contributions in Science, 526: 31180. https://doi.org/10.3897/zookeys.130.1569.CrossRefGoogle Scholar
Sheldon, K.S., Huey, R.B., Kaspari, M., and Sanders, N.J. 2018. Fifty years of mountain passes: a perspective on Dan Janzen’s classic article. The American Naturalist, 191: 553565.CrossRefGoogle ScholarPubMed
Shimizu, S., Broad, G.R., and Maeto, K. 2020. Integrative taxonomy and analysis of species richness patterns of nocturnal Darwin wasps of the genus Enicospilus Stephens (Hymenoptera, Ichneumonidae, Ophioninae) in Japan. ZooKeys, 990: 1144. https://doi.org/10.3897/zookeys.990.55542.CrossRefGoogle ScholarPubMed
Shorthouse, D.P. 2010. SimpleMappr, an online tool to produce publication-quality point maps. Available from: http://www.simplemappr.net [accessed 20 February 2020].Google Scholar
Smith, A.S., Fernandez-Triana, J., Roughley, R., and Hebert, P.D.N. 2009. DNA barcode accumulation curves for under studied taxa and areas. Molecular Ecology Resources, 9: 208216.CrossRefGoogle Scholar
Smith, M.A., Rodriguez, J.J., Whitfield, J.B., Deans, A.R., Janzen, D.H., Hallwachs, W., and Hebert, P.D. 2008. Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proceedings of the National Academy of Sciences of the United States of America, 105: 1235912364. https://doi.org/10.1073/pnas.0805319105.CrossRefGoogle ScholarPubMed
Stevens, G.C. 1989. The latitudinal gradient in geographical range: how so many species coexist in the tropics. The American Naturalist, 133: 240256.CrossRefGoogle Scholar
Stevens, G.C. 1992. The elevational gradient in altitudinal range: an extension of Rapoport’s latitudinal rule to altitude. The American Naturalist, 140: 893911.CrossRefGoogle ScholarPubMed
Timms, L.L., Schwarzfeld, M., and Sääksjärvi, I.E. 2015. Extending understanding of latitudinal patterns in parasitoid wasp diversity. Insect Conservation and Diversity, 9: 7486. https://doi.org/10.1111/icad.12144.CrossRefGoogle Scholar
Townes, H. 1971. Genera of Ichneumonidae, 4. Memoirs of the American Entomological Institute, 17: 1372.Google Scholar
Tucker, E.M., Chapman, E.G., and Sharkey, M.J. 2015. A revision of the New World species of Cremnops Förster (Hymenoptera: Braconidae: Agathidinae). Zootaxa, 3916: 183. https://doi.org/10.11646/zootaxa.3916.1.1.Google Scholar
van Achterberg, C., Sharkey, M.J., and Chapman, E.G. 2014. Revision of the genus Euagathis Szépligeti (Hymenoptera, Braconidae, Agathidinae) from Thailand, with description of three new species. Journal of Hymenoptera Research, 36: 125. https://doi.org/10.3897/jhr.36.5658.Google Scholar
van Noort, S. 2004. Ichneumonid (Hymenoptera: Ichneumonoidea) diversity across an elevational gradient on Monts Doudou in Southwestern Gabon. California Academy of Sciences Memoir, 28: 187216.Google Scholar
Varga, O. 2021. First record of the genus Gnathochorisis Förster, 1869 (Hymenoptera: Ichneumonidae: Orthocentrinae) from the Afrotropical region, with descriptions of two new species from Kenya. Zootaxa, 5052: 441446. https://doi.org/10.11646/zootaxa.5052.3.9.CrossRefGoogle Scholar
Veijalainen, A., Broad, G.R., and Sääksjärvi, I.E. 2014a. Twenty-seven new species of Orthocentrus (Hymenoptera: Ichneumonidae; Orthocentrinae), with a key to the Neotropical species of the genus. Zootaxa, 3768: 201252.Google Scholar
Veijalainen, A., Sääksjärvi, I.E., Erwin, T.L., Gómez, I.C., and Longino, J.T. 2013. Subfamily composition of Ichneumonidae (Hymenoptera) from western Amazonia: insights into diversity of tropical parasitoid wasps. Insect Conservation and Diversity, 6: 2837. https://doi.org/10.1111/j.1752-4598.2012.00185.x.CrossRefGoogle Scholar
Veijalainen, A., Sääksjärvi, I.E., Tuomisto, H., Broad, G.R., Bordera, S., and Jussila, R. 2014b. Altitudinal trends in species richness and diversity of Mesoamerican parasitoid wasps (Hymenoptera: Ichneumonidae). Insect Conservation and Diversity, 7: 496507. https://doi.org/10.1111/icad.12073.CrossRefGoogle Scholar
Veijalainen, A., Wahlberg, N., Broad, G.R., Erwin, T.L., Longino, J.T., and Sääksjärvi, I.E. 2012. Unprecedented ichneumonid parasitoid wasp diversity in tropical forests. Proceedings of Royal Society of London Biological Science, 279: 46944698.Google Scholar
Vilkamaa, P. and Komonen, A. 2001. Redescription and biology of Trichosia (Baeosciara) sinuata Menzel & Mohrig (Diptera: Sciaridae). Entomologica Fennica, 12: 4649. https://doi.org/10.33338/ef.84095.CrossRefGoogle Scholar
Villemant, C., Jingxian, L., and Rousse, P. 2016. Deep into the head of a remarkable new genus of Orthocentrinae (Hymenoptera: Ichneumonidae) from the highest peak of Papua New Guinea. In Insects of Mount Wilhelm, Papua New Guinea. Edited by T.F.L. Robillard, C. Villemant, and M. Leponce. Mémoires du Muséum national d’histoire naturelle. Muséum national d’histoire naturelle, Paris, France. Pp. 375–392.Google Scholar
Wahl, D.B. 1990. A review of the mature larvae of Diplazontinae, with notes on larvae of Acaenitinae and Orthocentrinae and proposal of two new subfamilies (Insecta: Hymenoptera, Ichneumonidae). Journal of Natural History, 24: 2752.CrossRefGoogle Scholar
Watanabe, K. 2019. Review of the genera Aniseres Förster, 1871 and Catastenus Förster, 1868 (Hymenoptera: Ichneumonidae: Orthocentrinae) from Japan. Japanese Journal of Systematic Entomology, 25: 8185.Google Scholar
Watanabe, K. 2020. Review of Gnathochorisis Forster, 1869 (Hymenoptera: Ichneumonidae: Orthocentrinae) from Japan, with description a new species. Japanese Journal of Systematic Entomology, 26: 4852.Google Scholar
Woelke, J.B., Pham, K., and Humala, A.E. 2020. New species of Stenomacrus (Hymenoptera: Ichneumonidae: Orthocentrinae) reared from Bradysia impatiens (Diptera: Sciaridae) in the Netherlands. Journal of Natural History, 54: 16031616. https://doi.org/10.1080/00222933.2020.1814890.Google Scholar
Yu, D.S.K., van Achterberg, C., and Horstmann, K. 2016. Taxapad 2016, Ichneumonoidea. Database on flash-drive, Nepean, Ottawa. Available from: http://www.taxapad.com [accessed 17 April 2020].Google Scholar
Zhang, S.J., Zhou, Q., Li, T., and Sheng, M.L. 2022. The genus Megastylus Schiødte (Hymenoptera, Ichneumonidae, Orthocentrinae) in China with a key to the species of China and Oriental region. Zootaxa, 5091: 6374.CrossRefGoogle Scholar
Zwakhals, C.J. and Diller, E. 2015. Eight new Orthocentrus species from South America (Hymenoptera; Ichneumonidae, Orthocentrinae). Mitteilungen der Münchner Entomologischen Gesellschaft, 105: 6578.Google Scholar