Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-03T12:00:48.216Z Has data issue: false hasContentIssue false

THE TEMPORAL PROGRAMMING OF DEVELOPMENT IN THE INTERTIDAL CHIRONOMID CLUNIO MARINUS (DIPTERA: CHIRONOMIDAE)*

Published online by Cambridge University Press:  31 May 2012

Dietrich Neumann
Affiliation:
Physiological Ecology Section, Department of Zoology, University of Koln, Germany

Abstract

The emergence times of most European Clunio populations are correlated with certain conditions of low tide and time of day which occur together only every 15 days. This temporal programming of development is determined by the combination of two different endogenous rhythms: a semilunar rhythm which controls the beginning of pupation and a circadian rhythm which controls the diurnal emergence time. The paper summarizes the known characteristics of these two physiological clocks and their adaptation to different tidal and photoperiodic conditions in the field.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aschoff, J., Klotter, K. und Wever, R.. 1965. Circadianer Wortschatz. In Aschoff, J., Circadian clocks. North-Holland Publ. Co., Amsterdam.Google Scholar
Beck, S. D. 1968. Insect photoperiodism. Academic Press, New York.Google Scholar
Brady, J. 1969. How are insect circadian rhythms controlled? Nature 223: 781785.CrossRefGoogle ScholarPubMed
Bünning, E. 1967. The physiological clock. 2nd ed. Academic Press, New York.CrossRefGoogle Scholar
Bünning, E. und Joerrens, G.. 1962. Versuche über den Zeitmessvorgang bei der photo-periodischen Diapause-Induktion von Pieris brassicae. Z. Naturforsch. 17: 5761.CrossRefGoogle Scholar
Caspers, H. 1951. Rhythmische Erscheinungen in der Fortpflanzung von Clunio marinus (Dipt. Chiron.) und das Problem der lunaren Periodizität. Arch. Hydrobiol., Suppl. 18: 415594.Google Scholar
Danilevskii, A. S. 1965. Photoperiodism and seasonal development of insects. Oliver and Boyd, Edinburgh and London.Google Scholar
Neumann, D. 1966. Die lunare und die tägliche Schlüpfperiodik der Mücke Clunio. Steuerung und Abstimmung auf die Gezeitenperiodik. Z. vergl. Physiol. 53: 161.CrossRefGoogle Scholar
Neumann, D. 1968. Die Steuerung eines semilunaren Schlüpfrhythmus mit Hilfe eines künstlichen Gezeitenzyklus. Z. vergl. Physiol. 60: 6378.CrossRefGoogle Scholar
Neumann, D. 1969. Die Kombination verschiedener endogener Rhythmen bei der zeitlichen Programmierung von Entwicklung und Verhalten. Oecologia 3: 166183.CrossRefGoogle Scholar
Neumann, D. and Honegger, H. W.. 1969. Adaptations of the intertidal midge Clunio to arctic conditions. Oecologia 3: 113.CrossRefGoogle ScholarPubMed
Palmén, E. and Lindeberg, B.. 1959. The marine midge, Clunio marinus Hal. (Dipt. Chironomidae) found in brackish water in the Northern Baltic. Int. Revue ges. Hydrobiol. Hydrogr. 44: 383394.CrossRefGoogle Scholar
Saunders, D. S. and Sutton, D.. 1969. Circadian rhythms in the insect photoperiodic clock. Nature 221: 559561.CrossRefGoogle ScholarPubMed