Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-23T11:31:23.415Z Has data issue: false hasContentIssue false

TEMPERATURE-DEPENDENT DEVELOPMENT AND PREDICTION OF HATCH OF OVERWINTERED EGGS OF THE FRUITTREE LEAFROLLER, ARCHIPS ARGYROSPILUS (WALKER) (LEPIDOPTERA: TORTRICIDAE)1

Published online by Cambridge University Press:  31 May 2012

Gary J.R. Judd
Affiliation:
Agriculture Canada Research Station, Summerland, British Columbia, Canada V0H 1Z0
Mark G.T. Gardiner
Affiliation:
Agriculture Canada Research Station, Summerland, British Columbia, Canada V0H 1Z0
Donald R. Thomson
Affiliation:
Pacific Biocontrol, 719 2nd St., Suite 12, Davis, California, USA 95616

Abstract

Thermal responses and temperature-dependent development of laboratory- and field-overwintered eggs of the fruittree leafroller, Archips argyrospilus (Walker), were described using data from constant-temperature laboratory experiments. The time required for completion of hatch of overwintering eggs declined throughout winter until the end of January, after which increasing exposure to natural or artificial cold conditions had minimal effect on median hatching time. There was little year to year variation in response to cold treatments, and thus it was concluded that diapause is terminated by 1 February. Time to hatch decreased with increasing temperature. Distributions of hatch times were near normal, with mean and median development times similar at any given temperature. Development time (days ± SD) at a mean temperature of 20 °C was similar under constant (10.7 ± 1.1) and fluctuating (9.1 ± 1.4) temperature regimes. A nonlinear, six-parameter, biophysical model, fitted (r2 = 0.99) to median hatching rates at 11 temperatures (0.5–30 °C) indicated development was nonlinear below 10 °C, increased linearly between 10 and 25 °C, was maximal at 27.5 °C, and decreased above 27.5 °C. The lower developmental threshold (± SE), estimated to be 4.95 ± 0.54 °C by linear regression (r2 = 0.98) and the x-intercept method, was used to construct a degree-day (DD) model for predicting egg hatch. Median egg development required 154 DD above 4.95 °C. Observed median egg hatch in two different field sites and years was within ± 3 days of the predicted date, using max–min air temperatures, a base temperature of 5 °C, and a starting date of 1 February for accumulating DD. This model should prove useful for scheduling management actions against fruittree leafroller on apples and pears.

Résumé

La réaction thermique et le développement des oeufs de la Tordeuse du pommier, Archips argyrospilus (Walker), en fonction de la température, au cours de l’hiver, ont été déterminés au moyen d’expériences en laboratoire à température constante. Le temps requis jusqu’à la fin de l’éclosion des oeufs diminue durant l’hiver jusqu’à la fin de janvier, après quoi l’exposition à des températures froides, naturelles ou artificielles, a peu d’effet sur la durée médiane de l’éclosion. La réaction au froid varie peu d’une année à l’autre et il a donc été conclu que la diapause est terminée le 1er février. Le temps nécessaire au développement diminue à mesure qu’augmente la température. La distribution des durées de développement jusqu’à l’éclosion est presque normale et les durées moyennes et médiane à une température donnée sont toujours semblables. La durée du développement (nombre de jours ± écart type) à une température moyenne de 20 °C est toujours à peu près la même, que la température soit constante (10,7 ± 1,1) ou fluctuante (9,1 ± 1,4). Un modèle biophysique non linéaire à six variables ajusté (r2 = 0,99) aux taux médians de développement à 11 températures (0,5–30 °C) indique que le développement n’est pas linéaire aux températures inférieures à 10 °C, augmente linéairement entre 10 et 25 °C, est maximal à 27,5 °C et diminue au-dessus de 27,5 °C. Le seuil inférieur de développement (± erreur type), estimé à 4,95 ± 0,54 °C par régression linéaire (r2 = 0,98) et d’après la position de l’intercept sur l’axe des x, a servi à construire un modèle basé sur les degrés-jours (DD). Le nombre médian théorique de degrés-jours nécessaire au développement des oeufs est de 154 degrés-jours au-dessus du seuil de 4,95 °C. Au cours d’observations à deux endroits pendant 2 ans, le nombre médian de jours requis pour parvenir à l’éclosion a été évalué à ± 3 jours autour de la valeur théorique, en utilisant les valeurs maximales et minimales de la température ambiante, une température de base de 5 °C et le 1er février comme date de début de l’accumulation de degrés-jours. Ce modèle peut s’avérer très utile dans des programmes de contrôle de la Tordeuse du pommier sur les pommiers ou les poiriers.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J.C. 1976. A modified sine wave method for calculating degree days. Environmental Entomology 5: 388396.CrossRefGoogle Scholar
Arnold, C.Y. 1959. The determination and significance of the base temperature in a linear heat unit system. Proceedings American Horticulture Science 74: 430445.Google Scholar
British Columbia Ministry of Agriculture, Fisheries, and Food. 1993. Tree Fruit Production Guide. Province of British Columbia. B.C.M.A.F.F., Victoria. B.C.135 pp.Google Scholar
Brown, J.J. 1991. Diapause. pp. 175–185 in van der Geest, L.P.S., and Evanhuis, H.H. (Eds.), Tortricid Pests: Their Biology, Natural Enemies and Control, World Crop Pests, Vol. 5. Elsevier, Holland. 808 pp.Google Scholar
Campbell, A., Fraser, B.D., Gilbert, N., Gutierrez, A.P., and Mackauer, M.. 1974. Temperature requirements of some aphids and their parasites. Journal of Applied Ecology 11: 431438.CrossRefGoogle Scholar
Cossentine, J.E., and Jensen, L.B.. 1991. Monitoring azinphosmethyl resistance in Archips argyrospila (Lepidoptera: Tortricidae) populations. Environmental Entomology 84: 13991403.Google Scholar
Higley, L.G., Pedigo, L.P.. and Ostlie, K.R.. 1986. DEGDAY: A program for calculating degree-days, and assumptions behind the degree-day approach. Environmental Entomology 15: 9991016.CrossRefGoogle Scholar
Madsen, H.F. 1970. Control of the fruit-tree leaf roller and notes on its biology in British Columbia. The Canadian Entomologist 102: 746749.CrossRefGoogle Scholar
Madsen, H.F., and Carty, B.E.. 1977. Fruittree leafroller: Control of a population tolerant to diazinon. Journal of Economic Entomology 70: 615616.CrossRefGoogle Scholar
Madsen, H.F., and Davis, W.W.. 1971. Further observations on the integrated control of the fruittree leafroller (Lepidoptera: Tortricidae) in British Columbia. The Canadian Entomologist 103: 15171519.CrossRefGoogle Scholar
Madsen, H.F., and Downing, R.S.. 1968. Integrated control of fruit-tree leaf roller, Archips argyrospilus (Walker) and the eye-spotted bud moth, Spilonota ocellana (Denis and Schiffermüller). Journal of the Entomological Society of British Columbia 65: 1921.Google Scholar
Madsen, H.F., Potter, S.A., and Peters, F.E.. 1977. Pest management: Control of Archips argyrospilus and Archips rosanus (Lepidoptera: Tortricidae) on apple. The Canadian Entomologist 109: 171174.CrossRefGoogle Scholar
Minitab Inc. 1989. Minitab Users Guide. DOS Microcomputer Version, Release 7. Minitab Inc., State College, PA, USA. 134 pp.Google Scholar
SAS Institute. 1990. SAS/Graph Software: Reference, Version 6, First Edition, Vol. 1. SAS Institute, Cary, NC, USA. 736 pp.Google Scholar
Schoolfield, R.M., Sharpe, P.J.H., and Magnuson, C.E.. 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. Journal of Theoretical Biology 88: 719731.CrossRefGoogle ScholarPubMed
Sharpe, P.J.H., and DeMichele, D.W.. 1977. Reaction kinetics of poikilotherm development. Journal of Theoretical Biology 64: 649670.CrossRefGoogle ScholarPubMed
Tauber, M.T., and Tauber, C.A.. 1976. Insect seasonality: Diapause maintenance, termination, and postdiapause development. Annual Review of Entomology 21: 81107.CrossRefGoogle Scholar
Vakenti, J.M., Campbell, C.J., and Madsen, H.F.. 1984. A strain of fruittree leafroller, Archips argyrospilus (Lepidoptera: Tortricidae), tolerant to azinphosmethyl in an apple orchard region of the Okanagan valley of British Columbia. The Canadian Entomologist 116: 6973.CrossRefGoogle Scholar
Venables, E.P. 1924. Leafrollers attacking orchard trees in the Okanagan Valley. Proceedings of the Entomological Society of British Columbia 21: 2226.Google Scholar
Wagner, T.L., Wu, H., Feldman, R.M., Sharpe, P.J.H., and Coulson, R.N.. 1985. Multiple-cohort approach for simulating development of insect populations under variable temperatures. Annals of the Entomological Society of America 78: 691704.CrossRefGoogle Scholar
Wagner, T.L., Wu, H., Sharpe, P.J.H., Schoolfield, R.M., and Coulson, R.N., 1984. Modeling insect development rates: A literature review and application of a biophysical model. Annals of the Entomological Society of America 77: 208225.CrossRefGoogle Scholar