Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T08:44:37.146Z Has data issue: false hasContentIssue false

Susceptibility of armyworm Spodoptera litura (Lepidoptera: Noctuidae) to novel insecticides in Pakistan

Published online by Cambridge University Press:  07 August 2017

Mushtaq Ahmad*
Affiliation:
Nuclear Institute for Agriculture and Biology, Jhang Road, Faisalabad 38000, Pakistan
Sanobar Gull
Affiliation:
Nuclear Institute for Agriculture and Biology, Jhang Road, Faisalabad 38000, Pakistan
*
1Corresponding author (e-mail: mushsoroya@gmail.com).

Abstract

The armyworm Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) is a serious pest of cotton (Gossypium hirsutum Linnaeus; Malvaceae), tobacco (Nicotiana tabacum Linnaeus; Solanaceae), and vegetables. Frequent application of various insecticides applied for its control has resulted in the development of a multiple resistance against commonly used insecticides. In the current study, field populations of S. litura were monitored in Pakistan for their susceptibility to diverse chemical classes, namely insect growth regulators (chlorfluazuron, lufenuron, flufenoxuron, triflumuron, methoxyfenozide), diamides (chlorantraniliprole, flubendiamide), spinosyns (spinosad, spinetoram), avermectins (abamectin, emamectin benzoate), indoxacarb, and thiocyclam by using a diet overlay bioassay during 2008–2013. Generally, no or a very low resistance was recorded to chlorfluazuron, lufenuron, triflumuron, methoxyfenozide, chlorantraniliprole, flubendiamide, spinosad, spinetoram, emamectin benzoate, indoxacarb, and thiocyclam. Resistance to flufenoxuron and abamectin was low to moderate in some populations of S. litura. The insecticides, showing no, very low, or low resistance can be used in rotation, along with other integrated pest management practices, to mitigate resistance to conventional as well as new chemistry insecticides in S. litura.

Type
Insect Management
Copyright
© Entomological Society of Canada 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: John Wise

References

Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265267.Google Scholar
Ahmad, M. 2009. Synergism of insecticides by enzyme inhibitors in the resistant populations of Spodoptera litura (Lepidoptera: Noctuidae). Acta Entomologica Sinica, 52: 631639.Google Scholar
Ahmad, M. and Arif, M.I. 2009. Resistance of Pakistani field populations of spotted bollworm Earias vittella (Lepidoptera: Noctuidae) to pyrethroid, organophosphorus and new chemical insecticides. Pest Management Science, 65: 433439.CrossRefGoogle ScholarPubMed
Ahmad, M., Arif, M.I., and Ahmad, Z. 2003. Susceptibility of Helicoverpa armigera (Lepidoptera: Noctuidae) to new chemistries in Pakistan. Crop Protection, 22: 539544.CrossRefGoogle Scholar
Ahmad, M., Arif, M.I., and Ahmad, M. 2007. Occurrence of insecticide resistance in field populations of Spodoptera litura (Lepidoptera: Noctuidae) in Pakistan. Crop Protection, 26: 809817.Google Scholar
Ahmad, M. and Hollingworth, R.M. 2004. Synergism of insecticides provides evidence of metabolic mechanisms of resistance in the obliquebanded leafroller Choristoneura rosaceana (Lepidoptera: Tortricidae). Pest Management Science, 60: 465473.Google Scholar
Ahmad, M., Hollingworth, R.M., and Wise, J.C. 2002. Broad-spectrum insecticide resistance in obliquebanded leafroller Choristoneura rosaceana (Lepidoptera: Tortricidae). Pest Management Science, 58: 834838.Google Scholar
Ahmad, M. and Mehmood, R. 2015. Monitoring of resistance to new chemistry insecticides in Spodoptera litura (Lepidoptera: Noctuidae) in Pakistan. Journal of Economic Entomology, 108: 12791288.Google Scholar
Ahmad, M., Sayyed, A.H., Saleem, M.A., and Ahmad, M. 2008. Evidence for field evolved resistance to newer insecticides in Spodoptera litura (Lepidoptera: Noctuidae) from Pakistan. Crop Protection, 27: 13671372.Google Scholar
Ali, M.A. 2011. Handbook for agriculture extension agents on pesticides standardized in the Punjab, 1st edition, Agriculture Extension Wing, Agriculture Department, Government of the Punjab, Lahore, Pakistan.Google Scholar
Caboni, P., Sarais, G., Angioni, A., Vargiu, S., Pagnozzi, D., Cabras, P., and Casida, J.E. 2008. Liquid chromatography − tandem mass spectrometric ion-switching determination of chlorantraniliprole and flubendiamide in fruits and vegetables. Journal of Agriculture and Food Chemistry, 56: 76967699.Google Scholar
Carlson, G.R., Dhadialla, T.S., Hunter, R., Jansson, R.K., Jany, C.S., Lidert, Z., and Slawecki, R.R. 2001. The chemical and biological properties of methoxyfenozide, a new insecticidal ecdysteroid agonist. Pest Management Science, 57: 115119.Google Scholar
Che, W., Shi, T., Wu, Y., and Yang, Y. 2013. Insecticide resistance status of field populations of Spodoptera exigua (Lepidoptera: Noctuidae) from China. Journal of Economic Entomology, 106: 18551862.CrossRefGoogle ScholarPubMed
Diab, H.S. 2011. Resistance categories of Kalubia and Menufia diamondback moth strains to some insecticides. Journal of Plant Protection and Pathology, 10: 835843.Google Scholar
El-Sheikh, E.S.A. and Aamir, M.M. 2011. Comparative effectiveness and field persistence of insect growth regulators on a field strain of the cotton leafworm, Spodoptera littoralis Boisd. (Lepidoptera: Noctuidae). Crop Protection, 30: 645650.Google Scholar
Finney, D.J. 1971. Probit analysis, 3rd edition. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
Gao, C., Yao, R., Zhang, Z., Wu, M., Zhang, S., and Su, J. 2013. Susceptibility baseline and chlorantraniliprole resistance monitoring in Chilo suppressalis (Lepidoptera: Pyralidae). Journal of Economic Entomology, 106: 21902194.CrossRefGoogle Scholar
Gao, M., Mu, W., Wang, W., Zhou, C., and Li, X. 2014. Resistance mechanisms and risk assessment regarding indoxacarb in the beet armyworm, Spodoptera exigua. Phytoparasitica, 42: 585594.Google Scholar
Guo, L., Wang, Y., Zhou, X., Li, Z., Liu, S., Pei, L., and Gao, X. 2014. Functional analysis of a point mutation in the ryanodine receptor of Plutella xylostella (L.) associated with resistance to chlorantraniliprole. Pest Management Science, 70: 10831089.Google Scholar
Hama, H., Suzuki, K., and Tanaka, H. 1992. Inheritance and stability of resistance to Bacillus thuringiensis formulations of the diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Yponomeutidae). Applied Entomology and Zoology, 27: 355362.Google Scholar
Holloway, J.D. 1990. The Lepidoptera of Easter, Pitcairn and Henderson Islands. Journal of Natural History, 24: 719729.Google Scholar
Hu, Z.D., Xia, F., Lin, Q.S., Chen, H.Y., Li, Z.Y., Fei, Y.I.N., et al. 2014. Biochemical mechanism of chlorantraniliprole resistance in the diamondback moth, Plutella xylostella Linnaeus. Journal of Integrated Agriculture, 13: 24522459.Google Scholar
International Institute of Entomology. 1993. Distribution maps of pests, series A, number 61 (2nd revision). Centre for Agriculture and Bioscience International, Wallingford, United Kingdom.Google Scholar
Ishtiaq, M., Razaq, M., Saleem, M.A., Anjum, F., Ane, M.N., Raza, A.M., and Wright, D.J. 2014. Stability, cross-resistance and fitness costs of resistance to emamectin benzoate in a re-selected field population of the beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae). Crop Protection, 65: 227231.Google Scholar
Ishtiaq, M. and Saleem, M.A. 2011. Generating susceptible strain and resistance status of field populations of Spodoptera exigua (Lepidoptera: Noctuidae) against some conventional and new chemistry insecticides in Pakistan. Journal of Economic Entomology, 104: 13431348.CrossRefGoogle ScholarPubMed
Ishtiaq, M., Saleem, M.A., and Razaq, M. 2012. Monitoring of resistance in Spodoptera exigua (Lepidoptera: Noctuidae) from four districts of the Southern Punjab, Pakistan to four conventional and six new chemistry insecticides. Crop Protection, 33: 1320.CrossRefGoogle Scholar
Jan, M.T., Abbas, N., Shad, S.A., and Saleem, M.A. 2015. Resistance to organophosphate, pyrethroid and biorational insecticides in populations of spotted bollworm, Earias vittella (Fabricius) (Lepidoptera: Noctuidae), in Pakistan. Crop Protection, 78: 247252.Google Scholar
Lasota, J.A. and Dybas, R.A. 1991. Avermectins, a novel class of compounds: implications for use in arthropod pest control. Annual Review of Entomology, 36: 91117.CrossRefGoogle ScholarPubMed
LeOra Software. 2003. Poloplus, a user’s guide to probit or logit analysis. LeOra Software, Berkeley, California, United States of America.Google Scholar
Liu, A.X., Chen, X.L., and Shang, C.C. 1985. The blocking action of thiocyclam hydrogen oxalate on nerve synapsis transmission in Periplaneta fuliginosa . Acta Entomologica Sinica, 28: 375381.Google Scholar
Liu, J., Dong, L.X., Tan, X.W., Fan, X.L., and Rui, C.H. 2011. Preliminary study on mechanism of resistance to methoxyfenozide in cotton bollworm, Helicoverpa armigera (Hübner). Chinese. Journal of Pesticide Science, 1: 1016.Google Scholar
Liu, X., Wang, H.Y., Ning, Y.B., Qiao, K., and Wang, K.Y. 2015. Resistance selection and characterization of chlorantraniliprole resistance in Plutella xylostella (Lepidoptera: Plutellidae). Journal of Economic Entomology, 108: 19781985.Google Scholar
Maree, J.M., Kallar, S.A., and Khuhro, R.D. 1999. Relative abundance of Spodoptera litura F. and Agrotis ypsilon Rott. on cabbage. Pakistan Journal of Zoology, 31: 3134.Google Scholar
Matsumura, F. 2010. Studies on the action mechanism of benzoylurea insecticides to inhibit the process of chitin synthesis in insects: a review on the status of research activities in the past, the present and the future prospects. Pesticide Biochemistry and Physiology, 97: 133139.Google Scholar
Mosallanejad, H. and Smagghe, G. 2009. Biochemical mechanisms of methoxyfenozide resistance in the cotton leafworm Spodoptera littoralis . Pest Management Science, 65: 732736.Google Scholar
Moulton, J.K., Pepper, D.A., and Dennehy, T.J. 1999. Studies of resistance of beet armyworm (Spodoptera exigua) to spinosad in field populations from the southern and southeast Asia. In Proceedings of Beltwide Cotton Conferences. Edited by P. Dugger and D. Richter. National Cotton Council of America, Memphis, Tennessee, United States of America. Pp. 884–887.Google Scholar
Moulton, J.K., Pepper, D.A., and Dennehy, T.J. 2000. Pro-active management of beet armyworm (Spodoptera exigua) resistance to IGRs, tebufenozide and methoxyfenozide. In Proceedings of Beltwide Cotton Conferences. Edited by P. Dugger and D. Richter. National Cotton Council of America, Memphis, Tennessee, United States of America. Pp. 999–1004.Google Scholar
Muthusamy, R., Vishnupriya, M., and Shivakumar, M.S. 2014. Biochemical mechanism of chlorantraniliprole resistance in Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). Journal of Asia-Pacific Entomology, 17: 865869.CrossRefGoogle Scholar
Oberlander, H. and Silhacek, D.L. 1998. Mode of action of insect growth regulators in Lepidopteran tissue culture. Pesticide Science, 54: 300302.Google Scholar
Pang, S., You, W., Duan, L., Song, X., Li, X., and Wang, C. 2012. Resistance selection and mechanisms of oriental tobacco budworm (Helicoverpa assulta Guenee) to indoxacarb. Pesticide Biochemistry and Physiology, 103: 219223.Google Scholar
Qayyum, M.A., Wakil, W., Arif, M.J., Sahi, S.T., Saeed, N.A., and Russell, D.A. 2015. Multiple resistances against formulated organophosphates, pyrethroids, and newer-chemistry insecticides in populations of Helicoverpa armigera (Lepidoptera: Noctuidae) from Pakistan. Journal of Economic Entomology, 108: 286293.Google Scholar
Qin, H., Ye, Z., Huang, S., Ding, J., and Luo, R. 2004. The correlations of the different host plants with preference level, life duration and survival rate of Spodoptera litura Fabricius. Chinese Journal of Ecology and Agriculture, 12: 4042.Google Scholar
Rehan, A. and Freed, S. 2014a. Resistance selection, mechanism and stability of Spodoptera litura (Lepidoptera: Noctuidae) to methoxyfenozide. Pesticide Biochemistry and Physiology, 110: 712.CrossRefGoogle ScholarPubMed
Rehan, A. and Freed, S. 2014b. Selection, mechanism, cross resistance and stability of spinosad resistance in Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Crop Protection, 56: 1015.Google Scholar
Reyes, M., Rocha, K., Alarcón, L., Siegwart, M., and Sauphanor, B. 2012. Metabolic mechanisms involved in the resistance of field populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) to spinosad. Pesticide Biochemistry and Physiology, 102: 4550.Google Scholar
Robertson, J.L., Savin, N.E., Preisler, H.K., and Russell, R.M. 2007. Bioassays with arthropods. CRC Press, Boca Raton, Florida, United States of America.Google Scholar
Roditakis, E., Vasakis, E., Grispou, M., Stavrakaki, M., Nauen, R., Gravouil, M., and Bassi, A. 2015. First report of Tuta absoluta resistance to diamide insecticides. Journal of Pest Science, 88: 916.Google Scholar
Saleem, M.A., Ahmad, M., Ahmad, M., Aslam, M., and Sayyed, A.H. 2008. Resistance to selected organochlorine, organophosphates, carbamates and pyrethroids in Spodoptera litura (Lepidoptera: Noctuidae) from Pakistan. Journal of Economic Entomology, 101: 16671675.Google Scholar
Salgado, V.L., Sheets, J.J., Watson, G.B., and Schmidt, A.L. 1998. Studies on the mode of action of spinosad: the internal effective concentration and the concentration dependence of neural excitation. Pesticide Biochemistry and Physiology, 60: 103110.CrossRefGoogle Scholar
Sayyed, A.H., Ahmad, M., and Saleem, M.A. 2008. Cross-resistance and genetics of resistance to indoxacarb in Spodoptera litura (Lepidoptera: Noctuidae). Journal of Economic Entomology, 101: 472479.Google Scholar
Shad, S.A., Sayyed, A.H., Fazal, S., Saleem, M.A., Zaka, S.M., and Ali, M. 2012. Field evolved resistance to carbamates, organophosphates, pyrethroids and new chemistry insecticides in Spodoptera litura Fab. (Lepidoptera: Noctuidae). Journal of Pest Science, 85: 53162.CrossRefGoogle Scholar
Shad, S.A., Sayyed, A.H., and Saleem, M.A. 2010. Cross-resistance, mode of inheritance and stability of resistance to emamectin in Spodoptera litura (Lepidoptera: Noctuidae). Pest Management Science, 66: 839846.Google Scholar
Sial, A.A., Brunner, J.F., and Garczynski, S.F. 2011. Biochemical characterization of chlorantraniliprole and spinetoram resistance in laboratory-selected obliquebanded leafroller, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae). Pesticide Biochemistry and Physiology, 99: 274279.CrossRefGoogle Scholar
Su, J., Lai, T., and Li, J. 2012. Susceptibility of field populations of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) in China to chlorantraniliprole and the activities of detoxification enzymes. Crop Protection, 42: 217222.Google Scholar
Su, J. and Sun, X.X. 2014. High level of metaflumizone resistance and multiple insecticide resistance in field populations of Spodoptera exigua (Lepidoptera: Noctuidae) in Guangdong Province, China. Crop Protection, 61: 5863.Google Scholar
Tabashnik, B.E., Mota-Sanchez, D., Whalon, M.E., Hollingworth, R.M., and Carriere, Y. 2014. Defining terms for proactive management of resistance to Bt crops and pesticides. Journal of Economic Entomology, 107: 496507.Google Scholar
Tong, H., Su, Q., Zhou, X., and Bai, L. 2013. Field resistance of Spodoptera litura (Lepidoptera: Noctuidae) to organophosphates, pyrethroids, carbamates and four newer chemistry insecticides in Hunan, China. Journal of Pest Science, 86: 599609.Google Scholar
Wang, J.J., Dong, H.G., and Yuan, L.Z. 2009. Resistance mechanisms of Spodoptera litura to indoxacarb. Acta Phytophylogica Sinica, 36: 168172.Google Scholar
Wang, W., Mo, J.C., Cheng, J., Zhuang, P.J., and Tang, Z.H. 2006. Selection and characterization of spinosad resistance in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Pesticide Biochemistry and Physiology, 84: 180187.Google Scholar
Wang, X. and Wu, Y. 2012. High levels of resistance to chlorantraniliprole evolved in field populations of Plutella xylostella . Journal of Economic Entomology, 105: 10191023.Google Scholar
Wing, K.D., Schnee, M.E., Sacher, M., and Connair, M. 1998. A novel oxadiazine insecticide is bioactivated in lepidopteran larvae. Archives of Insect Biochemistry and Physiology, 37: 91103.Google Scholar
Wu, M., Zhang, S., Yao, R., Wu, S., Su, J., and Gao, C. 2014. Susceptibility of the rice stem borer, Chilo suppressalis (Lepidoptera: Crambidae), to flubendiamide in China. Journal of Economic Entomology, 107: 12501255.CrossRefGoogle ScholarPubMed
Wu, Q.J., Zhang, W.J., Zhang, Y.J., Xu, B.Y., and Zhu, G.R. 2002a. Abamectin resistance selection and its cross-resistance revealed in diamondback moth, Plutella xylostella L. Acta Phytophylogica Sinica, 29: 239243.Google Scholar
Wu, Q.J., Zhang, W.J., Zhang, Y.J., Xu, B.Y., and Zhu, G.R. 2002b. Cuticular penetration and desensitivity of GABA receptor in abamectin resistant Plutella xylostella L. Acta Entomologica Sinica, 45: 336340.Google Scholar
Xia, Y., Lu, Y., Shen, J., Gao, X., Qiu, H., and Li, J. 2014. Resistance monitoring for eight insecticides in Plutella xylostella in central China. Crop Protection, 63: 131137.Google Scholar
Young, H.P., Bailey, W.D., Wyss, C.F., Roe, R.M., Sheets, J.J., Larson, L.L., and Sparks, T.C. 2000. Studies on the mechanism(s) of tobacco budworm resistance to spinosad (Tracer R). In Proceedings of Beltwide Cotton Conferences. Edited by P. Dugger and D. Richter. National Cotton Council of America, Memphis, Tennessee, United States of America. Pp. 1197–1200.Google Scholar
Zhang, S., Zhang, X., Shen, J., Mao, K., You, H., and Li, J. 2016. Susceptibility of field populations of the diamondback moth, Plutella xylostella, to a selection of insecticides in Central China. Pesticide Biochemistry and Physiology, 132: 3846.Google Scholar
Zhang, S.K., Ren, X.B., Wang, Y.C., and Su, J. 2014. Resistance in Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) to new chemistry insecticides. Journal of Economic Entomology, 107: 815820.Google Scholar
Zhou, C., Liu, Y., Yu, W., Deng, Z., Gao, M., Liu, F., and Mu, W. 2011. Resistance of Spodoptera exigua to ten insecticides in Shandong, China. Phytoparasitica, 39: 315324.Google Scholar