Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T00:55:34.266Z Has data issue: false hasContentIssue false

THE SPATIAL DISTRIBUTION OF SPRING AND SUMMER POPULATIONS OF ADULT POTATO FLEA BEETLES, EPITRIX CUCUMERIS (HARRIS) (COLEOPTERA: CHRYSOMELIDAE), ON SMALL PLOTS OF POTATOES

Published online by Cambridge University Press:  31 May 2012

Jeff G. Stewart
Affiliation:
Agriculture Canada Research Station, PO Box 1210, Charlottetown, Prince Edward Island, Canada C1A 7M8
Leith S. Thompson
Affiliation:
Agriculture Canada Research Station, PO Box 1210, Charlottetown, Prince Edward Island, Canada C1A 7M8

Abstract

The spatial distribution of spring and summer populations of the potato flea beetle, Epitrix cucumeris (Harris) (Coleoptera: Chrysomelidae), on potatoes (“Superior” variety) was studied in 1987 and 1988. Slopes of the regression of mean crowding on the mean number of adults per plant were not significantly different from 1.0 except for summer populations in 1988. The y-intercepts of these regression equations were not significantly different from 0, suggesting that adults of the potato flea beetle are not aggregated. The ratios of mean crowding to mean number of adults per plant were 0.81 for spring populations and 1.02 for summer populations, also indicating that the populations were not highly aggregated. With a level of precision of 0.25, 10 samples per plot were appropriate when more than 2.8 adults per plant were present in the spring and when more than 7.2 adults per plant were present in the summer.

Résumé

En 1987 et 1988, on a étudié la distribution spatiale de populations printanières et estivales de l’altise de la pomme de terre, Epitrix cucumeris (Harris) (Coléoptères : Chrysomélidés), sur la variété [Superior]. Les pentes de régression de la densité moyenne sur le nombre moyen d’adultes par plant ne diffèrent pas significativement de 1,0, sauf pour les populations estivales en 1988. Les abcisses à l’origine de ces équations de régression ne diffèrent pas significativement de 0, ce qui donne à penser que les altises adultes de la pomme de terre ne sont pas groupées. Les rapports de la densité moyenne au nombre moyen d’adultes par plant sont de 0,81 pour les populations printanières et de 1,02 pour les populations estivales, ce qui prouve également que les populations ne sont pas fortement groupées. Avec un seuil de précision de 0,25, il suffit de 10 échantillons par parcelle lorsqu’on retrouve plus de 2,8 adultes par plant au printemps et plus de 7,2 adultes par plant en été.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anonymous. 1987. Potato crop variety, weed and pest control recommendations for the Atlantic Provinces. Advisory Committee on Potatoes. Agdex 257, Publ. No. 1300A.Google Scholar
Asiedu, S., Coleman, S.E., Haliburton, T., and Hampson, M.C.. 1987. Atlantic Canada Potato Guide. Advisory Committee on Potatoes. Agdex 257/13, Publ. No. 1300.Google Scholar
Boivin, G., and Vincent, C.. 1983. Sequential sampling for pest control programs. Agric. Can., Res. Br., Contrib. No. 1983-14E.Google Scholar
Cannon, F.M. 1949. Potato flea beetle. Dominion of Canada, Dept. Agric., Sci. Serv., Div. Entomol., Processed Publ. Series No. 90.Google Scholar
Christensen, J.B., Gutierrez, A.P., Cothran, W.R., and Summers, C.G.. 1977. The within field spatial pattern of the larval Egyptian alfalfa weevil, Hypera brunneipennis (Coleoptera: Curculionidae): an application of parameter estimates in simulation. Can. Ent. 109: 15991604.CrossRefGoogle Scholar
Ferro, D.N. 1986. Potato insect pests. pp. 3240in Hollingsworth, C.S., Ferro, D.N., and Coli, W.H. (Eds.), Potato Production in the Northeast. Cooperative Extension, University of Massachusetts, Amherst, MA.Google Scholar
Lloyd, M. 1967. Mean crowding. J. Anim. Ecol. 36: 130.CrossRefGoogle Scholar
Martel, P., Belcourt, J., Choquette, D., and Boivin, G.. 1986. Spatial dispersion and sequential sampling plan for the Colorado potato beetle (Coleoptera: Chrysomelidae). J. econ. Ent. 79: 414417.CrossRefGoogle Scholar
Payne, R.W., Lane, P.W., Ainsley, A.E., Bicknell, K.E., Digby, P.G.N., Harding, S.A., Leech, P.K., Simpson, H.R., Todd, A.D., Verrier, P.J., White, R.P., Gower, J.C., Wilson, G. Tunnicliffe, and Paterson, L.J.. 1987. GENSTAT 5 Reference Manual. Clarendon Press, Oxford.Google Scholar
Shepard, M. 1980. Chapter 4. Sequential sampling plans for soybean arthropods. pp. 7993in Kogan, M., and Herzog, D.C. (Eds.), Sampling Methods in Soybean Entomology. Springer-Verlag, New York.CrossRefGoogle Scholar
Southwood, T.R.E. 1978. Ecological Methods. Chapman and Hall, Toronto.Google Scholar
Swartz, P.H., and Klassen, W.. 1981. Estimate of losses caused by insects and mites to agricultural crops. pp. 1577in Pimintel, D. (Ed.), CRC Handbook of Pest Management in Agriculture. CRC Press Inc., Boca Raton, FL.Google Scholar
Thompson, L.S. 1987. The control of the potato flea beetle, leafhoppers, wireworms, and white grubs. pp. 99111in Boiteau, G., Singh, R.P., and Parry, R.H. (Eds.), Potato Pest Management in Canada. Proc. Symp. Improving Potato Pest Protection, Fredericton, N.B., January 27–29, 1987.Google Scholar