Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T15:13:58.759Z Has data issue: false hasContentIssue false

SENSITIVITY OF BLUEBERRY LEAFTIER MOTHS (LEPIDOPTERA: TORTRICIDAE) (KEARFOTT) TO THEIR OWN SEX PHEROMONE: MATING BIOASSAY, ELECTROANTENNOGRAM, AND TRAP ATTRACTANCY STUDIES

Published online by Cambridge University Press:  31 May 2012

B.M. Ponder
Affiliation:
Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 6E1
W.D. Seabrook
Affiliation:
Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada E3B 6E1

Abstract

A mating suppression bioassay, an electroantennogram study, and a lure attractancy study demonstrated the sensitivity of the Croesia curvalana (Kft.) moth to the female sex pheromone. Mating suppression of 98% was achieved with source concentrations of 30 μg of either (E)- and (Z)-11-tetradecenal (95:5) or the natural pheromone blend of (E)- and (Z)-11-tetradecenal (90:10) + (E)- and (Z)-11-tetradecenyl acetate (85:15) (aldehyde:acetate = 9:1), and was 60% with a source concentration of 0.6 μg. Source concentrations of the minor component acetate, ranging from 15 to 0.6 μg, produced mating suppressions of from 78 to 38%. Male antennae responded to source concentrations of 2 × 10−10 mg (E)- and (Z)-11-tetradecenal (90:10) and antennal saturation occurred at 2 × 10−4 mg. Little female response was found at any age. Polyvinyl chloride lures releasing 1–2 ng/h captured males at approximately the same rate as did virgin moths. Release rates as low as 8 ng/h reduced trap capture from the 4 ng/h release rate found to be most effective under prevailing environmental conditions using Pherocon 1C traps. Results from these studies suggest C. curvalana could be a candidate for pheromone-based field mating suppression.

Résumé

Une étude de titrage biologique à supprimer l’accouplement, une étude d’électroantennogramme, et une étude d’attirance d’appât ont démontré la sensibilité de l’adulte de Croesia curvalana (Kft.) à la phéromone sexuelle femelle. La suppression d’accouplement au montant de 98% a été obtenue avec les concentrations de la source de 30 μg soit de l’(E)- et du (Z)-11-tétradécénal (95 : 5) ou du mélange naturel de la phéromone de l’(E)- et du (Z)-11-tétradécénal (90 : 10) + l’acétate de l’(E) et du (Z)-11-tétradécényl (85 : 15) (acétaldéhyde : acétate = 9 : 1), et a été de 60% avec une concentration de la source de 0,6 μg. Les concentrations à la source du composant le plus petit de l’acétate, variant de 15 à 0,6 μg, ont eu comme résultats les suppressions de 78 à 38%. L’antenne mâle a réagi contre une source de concentrations de 2 × 10−10 mg de l’(E)- et du (Z)-11-tétradécénal (90 : 10) et la saturation de l’antenne a eu lieu à 2 × 10−4 mg. Peu de réaction femelle n’a été découverte à aucun stade. Autant de mâles ont été pris par les appâts de chlorure du polyvinyle qui émettaient d’un à 2 ng/h que par les femelles adultes vierges. Les concentrations de relâchement aussi basses que de 8 ng/h ont réduit les prises par les pièges de celles avec une concentration de relâchement de 4 ng/h, qui a été trouvée la concentration la plus efficace sous les conditions courantes d’environnement en utilisant les pièges Pherocon 1C. Les résultats suggèrent que C. curvalana pourrait se porter candidat des essais de suppression d’accouplement sur le terrain.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method for computing the effectiveness of an insecticide. J. econ. Ent. 18: 265267.CrossRefGoogle Scholar
Beever, P.S., and Campion, D.C.. 1979. The field use of inhibitory components of Lepidopterous sex pheromones and pheromone mimics. pp. 313325in Ritter, F.J. (Ed.), Chemical Ecology: Odour Communication in Animals. Elsevier/North Holland Biomedical Press, Amsterdam.Google Scholar
Critchley, B.R., Campion, D.G.. McVeigh, L.J., McVeigh, E.M., Cavanagh, G.G., Hosny, M.M., Nasr, El-Sayed A., Khidr, A.A., and Naguib, M.. 1985. Control of pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae), in Egypt by mating disruption using hollow-fibre, laminated flakes and microencapsulated formulations of synthetic pheromone. Bull. ent. Res. 75: 329345.CrossRefGoogle Scholar
Fitzgerald, T.D., St. Clair, A.D., Daterman, G.E., and Smith, R.G.. 1973. Slow release plastic formulation of the cabbage looper pheromone cis-7-dodecenyl acetate: Release rate and biological activity. Environ. ent. 2: 607610.CrossRefGoogle Scholar
Flint, H.M., Curtice, N.J., and Yamamoto, A.. 1988. Pink bollworm (Lepidoptera: Gelechiidae): Further tests with (Z, Z)-isomer of gossyplure. J. econ. Ent. 81: 679683.Google Scholar
Langmaid, W.M., and Seabrook, W.D.. 1985. The micromorphology of the antennae of the blueberry leaf-tier moth, Croesia curvalana (Kft.) (Lepidoptera: Tortricidae). Can. J. Zool. 63: 11891193.Google Scholar
Lonergan, G. 1986. Metabolism of pheromone components and analogs by cuticular enzymes of Choristoneura fumiferana. J. Chem. Ecol. 12: 483496.CrossRefGoogle Scholar
Lonergan, G.C., Ponder, B.M., Seabrook, W.D., and Kipp, L.R.. 1989. Sex pheromone components of the blueberry leaftier moth Croesia curvalana (Lepidoptera: Tortricidae). J. Chem. Ecol. 15: 24952506.Google Scholar
Mayer, M.S., Mankin, R.W., and Grant, A.J.. 1987. Quantitative comparison of behavioral and electrophysiological responses of insects to odorants. J. Chem. Ecol. 13: 509531.CrossRefGoogle Scholar
Morse, D., and Meighen, E.. 1984. Detection of pheromone biosynthetic and degradative enzymes in vitro. J. Biol. Chem. 259: 475480.Google Scholar
Niwa, C.G., Daterman, G.E., Sartwell, C., and Sower, L.L.. 1988. Control of Rhyacionia zozana (Lepidoptera: Tortricidae) by mating disruption with synthetic sex pheromone. Environ. Ent. 17: 593595.CrossRefGoogle Scholar
Palaniswamy, P., and Seabrook, W.D.. 1985. The alteration of calling behavior of female Choristoneura fumiferana when exposed to synthetic sex pheromone. Entomologia exp. appl. 37: 1316.Google Scholar
Ponder, B.M., Kipp, L.R., Bergh, C., Lonergan, G.C., and Seabrook, W.D.. 1986. Factors affecting spruce budworm (Choristoneura fumiferana) (Clem.) mating and mating disruption with pheromone in the laboratory. Can. Ent. 118: 797805.CrossRefGoogle Scholar
Ponder, B.M., and Seabrook, W.D.. 1988. Biology of the blueberry leaftier Croesia curvalana (Kearfott) (Tortricidae): A field and laboratory study. J. Lepid. Soc. 42: 120131.Google Scholar
Ross, R.J., Palaniswamy, P., and Seabrook, W.D.. 1979. Electroantennograms from spruce budworm moths (Choristoneura fumiferana) (Lepideptera: Tortricidae) of different ages and for various pheromone concentrations. Can. Ent. 111: 807816.Google Scholar
Rothschild, G.H.L. 1981. Mating disruption of lepidopterous pests: Current status and future prospects. pp. 207208in Mitchell, E.R. (Ed.), Management of Insect Pests with Semiochemicals. Plenum Press, New York and London.CrossRefGoogle Scholar
Sanders, C.J. 1981. Release rates and attraction of PVC lures containing synthetic sex attractant of the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Can. Ent. 113: 103111.CrossRefGoogle Scholar
Sanders, C.J. 1988. Monitoring spruce budworm population density with sex pheromone traps. Can. Ent. 120: 175183.CrossRefGoogle Scholar
Seabrook, W.D., and Dyer, L.J.. 1983. Pheromones in insect control. pp. 673686in Endocrinology of Insects. Alan R. Liss Inc., New York.Google Scholar
Seabrook, W.D., and Kipp, L.R.. 1986. The use of a two component blend of the spruce budworm sex pheromone for mating suppression. pp. 128129in Chaudry, I.A., and Thies, C. (Eds.), Proceedings of the 13th International Symposium on Controlled Release of Bioactive Materials, Aug. 3–6, Norfolk, Virginia.Google Scholar
Silk, P.J., Tan, S.H., Wiesner, C.J., Ross, R.J., and Lonergan, G.C.. 1980. Sex pheromone chemistry of the eastern spruce budworm, Choristoneura fumiferana. Environ. Ent. 9: 640644.Google Scholar
Sower, L.L., Daterman, G.E., Funkhouser, W., and Sartwell, C.. 1983. Pheromone disruption controls Douglasfir tussock moth (Lepidoptera: Lymantriidae) reproduction at high insect densities. Can. Ent. 115: 965969.Google Scholar
Sower, L.L., Turner, W.K., and Fish, J.C.. 1975. Population-density-dependent mating frequency among Plodia interpunctella (Lepidoptera: Phycitidae) in the presence of synthetic sex pheromone with behavioural observations. J. Chem. Ecol. 1: 335342.Google Scholar
Staten, R.T., Flint, H.M., Weddle, R.C., Quintero, E., Zarate, R.E., Finnell, C.M., Hemandes, M., and Yamamoto, A.. 1987. Pink bollworm (Lepidoptera: Gelechiidae): Large-scale field trials with a high-rate gossyplure formulation. J. econ. Ent. 80: 12671271.Google Scholar
Van Steenwyk, R.A., Oatman, E.R., and Wyman, J.A.. 1983. Density treatment level for tomato pinworm (Lepidoptera: Gelechiidae) based on pheromone trap catches. J. econ. Ent. 76: 440445.Google Scholar
Webb, R.E., Tatman, K.M., Leonhardt, B.A., Plimmer, J.R., Boyd, V.K., Bystrak, P.G., Schwalbe, C.P., and Douglass, L.W.. 1988. Effect of aerial application of racemic disparlure on male trap catch and female mating success of gypsy moth (Lepidoptera: Lymantriidae). J. econ. Ent. 81: 268273.CrossRefGoogle Scholar