Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-21T02:29:33.478Z Has data issue: false hasContentIssue false

A SELECTION OF OILSEED RAPE, BRASSICA RAPA L., WITH RESISTANCE TO FLEA BEETLES, PHYLLOTRETA CRUCIFERAE (GOEZE) (COLEOPTERA: CHRYSOMELIDAE)1

Published online by Cambridge University Press:  31 May 2012

R.J. Lamb
Affiliation:
Agriculture Canada Research Station, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
P. Palaniswamy
Affiliation:
Agriculture Canada Research Station, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
K.A. Pivnick
Affiliation:
Agriculture Canada Research Station, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
M.A.H. Smith
Affiliation:
Agriculture Canada Research Station, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9

Abstract

Five cycles of single-plant and progeny-row selection in lines derived from Brassica rapa L. "Tobin" were used to identify plants with incomplete resistance to flea beetles, Phyllotreta cruciferae (Goeze). This line, called C8711, had higher survival, grew larger, and yielded more seed than Tobin when the two lines were compared in field plots at Glenlea, Manitoba, unprotected by insecticide. C8711 without insecticide yielded more seed than Tobin treated with a lindane seed dressing, but less than Tobin treated with carbofuran granules. With carbofuran, which prevents most flea beetle damage, the yield of C8711 was 35% higher than for Tobin. At Saskatoon, Saskatchewan, the differences between C8711 and Tobin were not statistically significant, although the trends were similar to those at Glenlea. C8711 was late maturing, produced small seed, and was not of canola quality. The resistance in C8711 is attributed to a low level of antixenosis, rapid growth at the cotyledon stage, and tolerance to damage during the first 3–4 weeks of growth.

Résumé

Cinq cycles de sélection à partir de plants individuels et de rangées de plants-fils au sein de lignées dérivées de Brassica rapa L. "Tobin" ont permis d’identifier une lignée à résistance incomplète à l’Altise des crucifères, Phyllotreta cruciferae (Goeze). Cette lignée, appelée C8711, avait une meilleure survie, donnait des plants plus grands et produisait plus de graines que la lignée Tobin, au sein de cultures faites dans des conditions comparables, sans insecticides, à Glenlea, Manitoba. La lignée C8711 sans insecticide a produit plus de graines qu’une culture de la lignée Tobin obtenue à partir de graines traitées au lindane, mais moins qu’une culture de Tobin traitée aux granules de carbofurane. En présence de carbofurane, qui protège les plants contre la majorité des dommages dus à l’altise, la production nette de C8711 était de 35% plus élevée que celle de la lignée Tobin. A Saskatoon, en Saskatchewan, les différences entre C8711 et Tobin n’étaient pas statistiquement significatives, bien que les résultats aient indiqué les mêmes tendances générales qu’à Glenlea. Chez la lignée C8711, la maturation était tardive, les graines produites étaient petites et les plants n’étaient pas de qualité canola. La résistance de C8711 est attribuable à sa faible concentration d’anti-xénose, à sa croissance rapide au stade cotylédon et à sa tolérance aux ravages au cours des 3 ou 4 premières semaines de sa croissance.

[Traduit par la rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bodnaryk, R.P., and Lamb, R.J.. 1991 a. Mechanisms of resistance to the flea beetle, Phyllotreta cruciferae (Goeze), in yellow mustard seedlings, Sinapis alba L. Canadian Journal of Plant Science 71: 1320.CrossRefGoogle Scholar
Bodnaryk, R.P., and Lamb, R.J.. 1991 b. Influence of seed size in canola, Brassica napus L., and mustard, Sinapis alba L., on seedling resistance against flea beetles, Phyllotreta cruciferae (Goeze). Canadian Journal of Plant Science 71: 397404.CrossRefGoogle Scholar
Bodnaryk, R.P., and Palaniswamy, P.. 1990. Glucosinolate levels in cotyledons of mustard, Brassica juncea L. and rape, B. napus L. do not determine feeding rates of flea beetles, Phyllotreta cruciferae (Goeze). Journal of Chemical Ecology 16: 27352746.CrossRefGoogle Scholar
Brett, C.H., and Rudder, J.D.. 1966. Resistance of 30 commercial cruciferous varieties to the striped flea beetle, Phyllotreta striolata. Journal of Economic Entomology 59: 769.CrossRefGoogle Scholar
Conway, T.F. 1963. Nuclear magnetic resonance for determining oil content of seeds. Journal of American Oil Chemistry Society 40: 265268.CrossRefGoogle Scholar
Environment Canada. 1982. Canadian Climate Normals. Vol. 2. Temperature 19511980. Environment Canada, Ottawa, Canada. 306 pp.Google Scholar
Kogan, M., and Ortman, E.F.. 1978. Antixenosis — a new term proposed to define Painter's “non-preference” modality of resistance. Bulletin of the Entomological Society of America 24: 175176.CrossRefGoogle Scholar
Lamb, R.J. 1980. Hairs protect pods of mustard (Brassica hirta ‘Gisilba’) from flea beetle feeding damage. Canadian Journal of Plant Science 60: 14391440.CrossRefGoogle Scholar
Lamb, R.J. 1984. Effects of flea beetles, Phyllotreta spp. (Chrysomelidae: Coleoptera), on the survival, growth, seed yield and quality of canola, rape and yellow mustard. The Canadian Entomologist 116: 269280.CrossRefGoogle Scholar
Lamb, R.J. 1988. Assessing the susceptibility of crucifer seedlings to flea beetle (Phyllotreta spp.) damage. Canadian Journal of Plant Science 68: 8593.CrossRefGoogle Scholar
Lamb, R.J. 1989. Entomology of oilseed Brassica crops. Annual Review of Entomology 34: 211229.CrossRefGoogle Scholar
Lamb, R.J., and Palaniswamy, P.. 1990. Host discrimination by a crucifer-feeding flea beetle, Phyllotreta striolata (F.) (Coleoptera: Chrysomelidae). The Canadian Entomologist 122: 817824.CrossRefGoogle Scholar
Lamb, R.J., and Turnock, W.J.. 1982. Economics of insecticidal control of flea beetles (Coleoptera: Chrysomelidae) attacking rape in Canada. The Canadian Entomologist 114: 827840.CrossRefGoogle Scholar
Manitoba Agriculture. 1989. Manitoba Insect Control Guide. Manitoba Agriculture. Winnipeg, Canada. 52 pp.Google Scholar
Painter, R.H. 1951. Insect Resistance in Crop Plants. University of Kansas, Lawrence, KS. 521 pp.Google Scholar
Palaniswamy, P., Lamb, R.J., and McVetty, P.B.E.. 1992. Screening for antixenosis resistance to flea beetles, Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae), in rapeseed and related crucifers. The Canadian Entomologist 124: 895906.CrossRefGoogle Scholar
Putnam, L.G. 1977. Response of four Brassica seed crop species to attack by the crucifer flea beetle, Phyllotreta cruciferae. Canadian Journal of Plant Science 57: 987989.CrossRefGoogle Scholar
Raney, J.P., and McGregor, D.I.. 1990. Determination of glucosinolate content by gas chromatography of triemethylsilyl derivatives of desulfated glucosinolates. In McGregor, D.I. (Ed.), Selected Methods for Glucosinolate Analyses. Proceedings of the Oil Crops Network, Brassica Sub-Network, Shanghai, China.Google Scholar
Snedecor, G.W., and Cochran, W.G.. 1980. Statistical Methods, 7 ed. Iowa State University Press, Ames, IA. 507 pp.Google Scholar
Sokal, R.R., and Rohlf, F.J.. 1981. Biometry. Freeman, San Francisco, CA. 859 pp.Google Scholar
Weiss, M.J., Mcleod, P., Schatz, B.G., and Hanson, B.K.. 1991. The potential for insecticidal management of flea beetles (Coleoptera: Chrysomelidae) attacking canola. Journal of Economic Entomology 84: 15971603.CrossRefGoogle Scholar