Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T15:53:06.508Z Has data issue: false hasContentIssue false

Relationships between gregarine infection in damselflies, wetland type, and landscape characteristics

Published online by Cambridge University Press:  07 September 2012

Julia J. Mlynarek*
Affiliation:
Department of Biology, Carleton University, 1125 Colonel By Drive Ottawa, ON Canada K1S 5B6
Daniel G. Bert
Affiliation:
Geomatics and Landscape Ecology Research Laboratory, Carleton University, 1125 Colonel By Drive Ottawa, ON Canada K1S 5B6
G. Haydeé Peralta-Vázquez
Affiliation:
Instituto de Ecologia, Universidad Nacional Autónoma de México, Apdo. P. 70-275m Circuito Exterior, Ciudad Universitaria, 04510 Coyoacán, Distrito Federal, México
Joanna A. James
Affiliation:
Department of Biology, Carleton University, 1125 Colonel By Drive Ottawa, ON Canada K1S 5B6
Mark R. Forbes
Affiliation:
Department of Biology, Carleton University, 1125 Colonel By Drive Ottawa, ON Canada K1S 5B6
*
1Corresponding author (e-mail: jmlynare@connect.carleton.ca).

Abstract

Although human-modified landscapes are characterized by the loss of natural habitats, new habitats also can be created and exploited by many species. The importance of landscape change to invertebrate associations (particularly host-parasite associations) is understudied. Our objective was to determine whether prevalence and intensity of gregarine parasitism in the damselfly Ischnura verticalis (Say) (Odonata: Coenagrionidae) differed between 17 artificial and 7 natural wetlands in landscapes that varied in amount of forest and wetland cover and road density determined at spatial extents of 500m and 1km from each wetland. Wetlands were located in and around Ottawa, Ontario, and Gatineau, Quebec, Canada. Wetland type did not account for significant variation in principal components based on forest and wetland cover and road density at either spatial extent. Gregarine prevalence was higher in damselflies collected from natural wetlands than in those collected from artificial wetlands and was positively associated with increasing forest cover. In contrast, gregarine intensity was inversely related to road density. Our results suggest that parasitism of damselflies by gregarines is associated with wetland type and landscape characteristics, although the mechanisms producing such relationships are unknown.

Résumé

Bien que les paysages modifiés par les humains se caractérisent par la perte d'habitats naturels, il peut aussi s'y créer de nouveaux habitats qui sont exploités par de nombreuses espèces. L'importance des changements de paysage pour les associations d'espèces (particulièrement les associations hôtes-parasites) est peu étudiée. Nous examinons si la prévalence et l'intensité du parasitisme de la demoiselle Ischnura verticalis (Say) (Odonata : Coenagrionidae) par les grégarines diffèrent entre 17 terres humides artificielles et 7 naturelles dans des paysages qui varient par leur couverture de forêts et de terres humides et par la densité des routes à des distances de 500 m et 1 km de chaque terre humide. Les terres humides se situent à Ottawa, Ontario, et à Gatineau, Québec, et les environs. Le type de terre humide n'explique pas la variation significative des composantes principales basées sur la couverte de forêts et de terres humides et la densité de routes aux deux échelles spatiales. La prévalence des grégarines est plus élevée chez les demoiselles prélevées dans les terres humides naturelles que chez celles provenant des terres humides artificielles et il existe une association positive avec l'augmentation de la couverture forestière. En revanche, il y a une relation inverse entre l'intensité des grégarines et la densité des routes. Nos résultats laissent croire que le parasitisme des demoiselles par les grégarines est associé au type de terre humide et aux caractéristiques du paysage, bien que les mécanismes responsables de ces associations restent inconnus.

[Traduit par la Rédaction]

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åbro, A. 1971. Gregarines: their effects on damselflies (Odonata: Zygoptera). Entomologica Scandinavica, 2: 294300.CrossRefGoogle Scholar
Åbro, A. 1976. The mode of gregarine infection in Zygoptera (Odonata). Zoologica Scripta, 5: 265275.CrossRefGoogle Scholar
Åbro, A. 1987. Gregarine infection of Zygoptera in diverse habitats. Odonatologica, 16: 119128.Google Scholar
Åbro, A. 1990. The impact of parasites in adult populations of Zygoptera. Odonatologica, 19: 223233.Google Scholar
Bergerot, B. Julliard, R. Baguette, M. 2010. Metacommunity dynamics: decline of functional relationship along a habitat fragmentation gradient PLoS ONE, 5: e11294.CrossRefGoogle Scholar
Bouwma, A.M. Howard, K.J. Jeanne, R.L. 2005. Parasitism in a social wasp: effect of gregarines on foraging behaviour, colony productivity, and adult mortality. Behavioral Ecology and Sociobiology, 59: 222233.CrossRefGoogle Scholar
Bush, A.O. Lafferty, K.D. Lotz, J.M. Shostak, A.W. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology, 83: 575583.CrossRefGoogle Scholar
Bush, A.O. Fernández, J.C. Esch, G.W. Seed, J.R. 2001. Parasitism: the diversity and ecology of animal parasites. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
Clopton, R.E. 2004. Calycocephalus karyopera g. nov., sp. nov. (Eugragarinorida: Actinocephalidae: Actinocephalinae) from the ebony jewelwing damselfly Calopteryx maculata (Zygoptera: Calopterygidae) in southeast Nebraska: implications for mechanical prey-vector stabilization of exogenous gregarine development. Comparative Parasitology, 71: 141153.CrossRefGoogle Scholar
Clopton, R.E. Cook, T.J. Cook, J.L. 2004. Naiadocystis phykoterion n.gen. n. sp. (Apicomplexa: Eugregarinida: Hirmocystidae) from the Mexican pygmy grasshopper Paratettix mexicanus (Orthoptera: Tetrigidae) in the Texas Big Thicket with recognition of three previously described species of Naiadocystis. Journal of Parasitology, 90: 301307.CrossRefGoogle Scholar
Corbet, P.S. 1999. Dragonflies: behavior and ecology of Odonata. Comstock Publishing Associates. Cornell University Press, Ithaca, New York.Google Scholar
Fenoglio, M.S. Salvo, A. Estallo, E.L. 2009. Effects of urbanisation on the parasitoid community of a leafminer. Acta Oecologica, 35: 318326.CrossRefGoogle Scholar
Forbes, M.R. Robb, T. 2008. Testing hypotheses about parasite-mediated selection using odonate hosts. In Dragonflies: model organisms for ecological and evolutionary research. 175188. Edited by Cordoba-Aguilar, A.. Oxford University Press, New York. 175188.CrossRefGoogle Scholar
Heikkinen, R.K. Luoto, M. Virkkala, R. Rainio, K. 2004. Effects of habitat cover landscape structure and spatial variable on the abundance of birds in an agriculture-forest mosaic. Journal of Applied Ecology, 41: 824835.CrossRefGoogle Scholar
Holzschuh, A. Steffan-Dewebter, I. Tscharntke, T. 2010. How landscape composition and configuration, organic farming and fallow strips affect the diversity of bees, wasps and their parasitoids. Journal of Animal Ecology, 79: 491500.CrossRefGoogle ScholarPubMed
James, J. A. Bert, D.G. Forbes, M.R. 2009. Wetland type differentially affects ectoparasitic mites and their damselfly hosts. Ecography, 32: 800806.CrossRefGoogle Scholar
Locklin, J.L. Vodopich, D.S. 2010. Patterns of gregarine parasitism in dragonflies: host, habitat, and seasonality. Parasitology Research, 107: 7587.CrossRefGoogle ScholarPubMed
Roland, J. 1993. Large scale forest fragmentation increases the duration of tent caterpillar outbreak. Oecologia, 93: 2530.CrossRefGoogle ScholarPubMed
Schüepp, C. Herrmann, J.D. Herzog, F. Schmidt-Entling, M.H. 2011. Differential effects of habitat isolation and landscape composition on wasps, bees and their enemies. Oecologia, 165: 713721.CrossRefGoogle ScholarPubMed
Smith, B.P. 1988. Host-parasite interaction and impact of larval water mites on insects. Annual Review of Entomology, 33: 487507.CrossRefGoogle Scholar
SPSS Inc. 2008. SPSS® version 17.0 [computer program] SPSS Inc., Chicago.Google Scholar
Taylor, P.D. Merriam, G. 1996. Habitat fragmentation and parasitism of a forest damselfly. Landscape Ecology, 11: 181189.CrossRefGoogle Scholar
Thompson, J.N. 2005. The geographic mosaic of coevolution. University of Chicago Press, Chicago.CrossRefGoogle Scholar
Walker, E.M. The Odonata of Canada and Alaska, Vol. 1. University of Toronto Press, Toronto, Ontario. 1953.CrossRefGoogle Scholar
Zar, J.H. 1984. Biostatistical analysis. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar