Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T20:44:15.527Z Has data issue: false hasContentIssue false

Receptor characterization of nontarget butterflies for risk assessment of biological control with the egg parasitoid Trichogramma minutum (Hymenoptera: Trichogrammatidae)

Published online by Cambridge University Press:  02 April 2012

R.S. Bourchier*
Affiliation:
Agriculture and Agri-Food Canada, Lethbridge Research Centre, 5403 1st Avenue South, Lethbridge, Alberta, Canada T1J 4B1
*

Abstract

Receptor characterization (i.e., identifying what will be affected by an activity) is the first step in a risk assessment of biocontrol agents for insects. Development of a representative list of species at risk, based on ecological vulnerability, enables host-range screening of potential biocontrol agents on a manageable group of nontarget insects. A database of 153 species was used to characterize the butterflies potentially at risk from an inundative release of the egg parasitoid Trichogramma minutum Riley. Risk criteria for butterfly species included North American, Canadian, and Ontario geographic distributions; oviposition phenology; number of generations per year; overwintering stage; host-plant preferences; and egg mass type and location. Ecological vulnerability lists of butterfly species were generated for northern and southern Ontario; areas where there have been recent experimental inundative releases of T. minutum for the suppression of forest pests. Based on the above criteria, 2 species and a maximum of 27 species would be potentially at risk, and thus requiring host-range testing if an inundative release were considered for northern and southern Ontario, respectively. The number of species on the ecological vulnerability list for southern Ontario could be reduced to 12 species depending on the specific geographic location in southern Ontario of the inundative release. The six criteria used for receptor characterization for T. minutum, associated primarily with host-habitat location and host-location, can also be used for other parasitoids. They are components of any target host's biology, and thus will affect the scale and impact of any parasitoid attacking eggs, larvae, or pupae. Additional criteria for receptor characterization may also be added that will relate to the specifics of a parasitoid's biology and are associated with host acceptance and host suitability. Development of ecologically based vulnerability lists should become standard practice in determining which nontarget species require host-range testing, for both inundative and classical biocontrol agents targeting insects, and for the potential impact of invasive species.

Résumé

La caractérisation des récepteurs (i.e. la reconnaissance de ce qui sera affecté par une activité) constitue la première étape de l'évaluation des risques de l'utilisation d'agents de lutte biologique contre les insectes. L'élaboration d'une liste représentative des espèces à risque, basée sur leur vulnérabilité écologique, permet de faire un survol des espèces hôtes d'agents de lutte biologique éventuels au sein d'un groupe de taille raisonnable d'espèces d'insectes non ciblés. Une base de données de 153 espèces de papillons a servi à caractériser les espèces potentiellement à risque lors d'une libération en masse de Trichogramma minutum Riley. Parmi les critères d'évaluation des risques pour les espèces de papillons, il faut compter leur répartition en Amérique du Nord, au Canada et en Ontario, la phénologie de leur ponte, le nombre de générations qu'elles produisent par année, leur stade d'hiver, leurs préférences de plantes hôtes, leur type de masse d'oeufs et le lieu de leur ponte. Nous avons dressé des listes d'espèces de papillons du nord et du sud de l'Ontario en fonction de leur vulnérabilité écologique; ces deux régions ont été soumises récemment à des relâchements en masse de T. minutum pour supprimer des insectes ravageurs des forêts. D'après ces critères, 2 espèces du nord de l'Ontario et un maximum de 27 espèces du sud seraient potentiellement à risque et il faudrait faire des tests sur l'étendue des espèces hôtes avant de procéder à un relâchement massif d'agents de lutte. Le nombre d'espèces vulnérables de la liste peut se réduire à 12 dépendant du lieu géographique du sud de l'Ontario où se fait le relâchement en masse. Les six critères utilisés pour caractériser les récepteurs de T. minutum, critères associés surtout à la position géographique de l'habitat de l'hôte et à la position des hôtes, peuvent également servir avec d'autres parasitoïdes. Ce sont des composantes de la biologie de toute espèce hôte ciblée et, par le fait même, ils affectent l'impact et l'échelle d'action de tout parasitoïde qui s'attaque aux oeufs, aux larves ou aux nymphes. Des critères additionnels reliés aux caractéristiques particulières de la biologie des parasitoïdes et associés à la compatibilité avec l'hôte et à son acceptation peuvent aussi être utilisés. L'élaboration de listes d'espèces vulnérables sur la base de leur écologie devrait être une pratique courante pour déterminer quelles espèces non ciblées doivent être testées pour leur vulnérabilité aux agents de lutte biologique, tant classiques que de libération en masse, et pour évaluer l'impact potentiel des espèces relâchées en masse.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bai, B., Cobanglu, S., Smith, S.M. 1995. Assessment of Trichogramma species for biological control of forest Lepidoptera defoliators. Entomologia Experimentalis et Applicata 75: 135–43CrossRefGoogle Scholar
Bergeijk, KE van, Bigler, F., Kaashoek, N.K. 1989. Changes in host-acceptance and host-suitability as an effect of rearing Trichogramma maidis on a factitious host. Entomologia Experimentalis et Applicata 52: 229–38CrossRefGoogle Scholar
Bird, C.D., Hichie, G.J., Kondla, N.G., Pike, E.M., Sperling, F.A.H. 1995. Alberta butterflies. Edmonton: The Provincial Museum of AlbertaGoogle Scholar
Boettner, G.H., Elkinton, J.S., Boettner, C.J. 2000. Effects of biological control introductions on three non-target species of saturniid moths. Conservation Biology 14: 1798–806CrossRefGoogle Scholar
Bourchier, R.S., McCarty, L.S. 1995. Risk assessment of biological control (predators and parasitoids). Bulletin of the Entomological Society of Canada 27: 126–38Google Scholar
Bourchier, R.S., Smith, S.M. 1998. Interactions between large-scale inundative releases of Trichogramma minutum (Hymenoptera: Trichogrammatidae) and naturally occurring spruce budworm (Lepidoptera: Tortricidae) parasitoids. Environmental Entomology 27: 1273–9CrossRefGoogle Scholar
Bourchier, R.S., Smith, S.M., Corrigan, J.E., Laing, J.E. 1994. Effect of host switching on performance of massreared Trichogramma minutum. Biocontrol Science and Technology 4: 353–62CrossRefGoogle Scholar
Caltagirone, L.E. 1981. Landmark examples of classical biological control. Annual Review of Entomology 26: 213–32CrossRefGoogle Scholar
Corrigan, J.E., Laing, J.E. 1994. Effects of the rearing host species and the host species attacked on performance by Trichogramma minutum Riley (Hymenoptera: Trichogrammatidae). Environmental Entomology 23: 755–60CrossRefGoogle Scholar
Cortesero, A.M., Stapel, J.O., Lewis, W.J. 2000. Understanding and manipulating plant attributes to enhance biological control. Biological Control 17: 3549CrossRefGoogle Scholar
Doutt, R.L. 1959. The biology of parasitic hymenoptera. Annual Review of Entomology 4: 161–82CrossRefGoogle Scholar
Follet, P.A., Duan, J.J. (Editors). 2000. Nontarget effects of biological biocontrol. Boston, Massachusetts: KluwerCrossRefGoogle Scholar
Godfray, H.C.J. 1994. Parasitoids: behavioral and evolutionary ecology. Princeton, New Jersey: Princeton University PressCrossRefGoogle Scholar
Hassan, S.A. 1994. Strategies to select Trichogramma species for use in biological control. pp 5571in Wajnberg, E., Hassan, S.A. (Eds), Biological control with egg parasitoids. Wallingford, United Kingdom: CAB International PublicationGoogle Scholar
Henneman, M.L., Memmott, J. 2001. Infiltration of a Hawaiian community by introduced biological control agents. Science (Washington, DC) 293: 1314–6CrossRefGoogle ScholarPubMed
Holmes, A.M., Tasker, R.R., Hess, Q.F., Hanks, A.J. 1991. The Ontario butterfly atlas. Toronto, Ontario: Toronto Entomologists' AssociationGoogle Scholar
Huffaker, C.B., Messenger, P.S. 1976. Theory and practice of biological control. New York: Academic PressGoogle Scholar
Jennings, D.T., Houseweart, M.W. 1983. Parasitism of spruce budworm (Lepidoptera: Tortricidae) eggs by Trichogramma minutum and the absence of overwintering parasitoids. Environmental Entomology 12: 535–40CrossRefGoogle Scholar
Kemp, W.P., Simmons, G.A. 1978. The influence of stand factors on parasitism of spruce budworm eggs by Trichogramma minutum. Environmental Entomology 7: 685–8CrossRefGoogle Scholar
Klassen, P., Westwood, A.R., Preston, W.B., McKillop, W.B. 1989. The butterflies of Manitoba. Winnipeg: The Manitoba Museum of Man and NatureGoogle Scholar
Layberry, R., Hall, P.W., Lafontaine, J.D. 1998. The butterflies of Canada. Toronto, Ontario: University of Toronto PressCrossRefGoogle Scholar
Lewis, W.J., Stapel, J.O., Cortesero, A.M., Takasu, K. 1998. Understanding how parasitoids balance food and host needs: importance to biological control. Biological Control 11: 175–83CrossRefGoogle Scholar
Lipton, J., Galbraith, H., Burger, J., Wartenberg, D. 1993. A paradigm for ecological risk assessment. Environmental Management 17: 15CrossRefGoogle Scholar
Lonsdale, W.M., Briese, D.T., Cullen, J.M. 2001. Risk analysis and weed biological control. pp 185210in Wajnberg, E., Scott, J.K., Quimby, P.C. (Eds), Evaluating indirect ecological effects of biological control. Wallingford, United Kingdom: CAB International PublicationGoogle Scholar
Louda, S.M., Kendall, D., Conner, J., Simberloff, D. 1997. Ecological effects of an insect introduced for the biological control of weeds. Science (Washington, DC) 277: 1088–90CrossRefGoogle Scholar
Lukianchuk, J.L., Smith, S.M. 1997. Influence of plant structural complexity on the foraging success of Trichogramma minutum: a comparison of search on artificial and foliage models. Entomologia Experimentalis et Applicata 84: 221–8CrossRefGoogle Scholar
Marohasy, J. 1998. The design and interpretation of host-specificity tests for weed biological control with particular reference to insect behaviour. Biocontrol News and Information 19: 13N20NGoogle Scholar
National Academy of Sciences. 1983. Risk assessment in the federal government: managing the process. Washington, District of Columbia: National Academy PressGoogle Scholar
Nordlund, D. 1994. Habitat location by Trichogramma. pp 155–63 in Wajnberg, E., Hassan, S.A. (Eds), Biological control with egg parasitoids. Wallingford, United Kingdom: CAB International PublicationGoogle Scholar
Orr, D.B., Garcia-Salazar, C., Landis, D.A. 2000. Trichogramma nontarget impacts: a method for biological control risk assessment. pp 111–25 in Follet, P.A., Duan, J.J. (Eds), Nontarget effects of biological control. Boston, Massachusetts: KluwerCrossRefGoogle Scholar
Ostaff, D.P., Quiring, D.T. 1994. Seasonal distribution of adult eclosion, oviposition, and parasitism and predation of eggs of the spruce budmoth Zeiraphera canadensis (Lepidoptera: Tortrcidae). The Canadian Entomologist 126: 9951006CrossRefGoogle Scholar
Pinto, J.D. 1998. Systematics of the North American species of Trichogramma Westwood (Hymenoptera: Trichogrammatidae). Memoirs of the Entomological Society of Washington 22: 1287Google Scholar
Pinto, J.D., Stouthamer, R. 1994. Systematics of the Trichogrammatidae with emphasis on Trichogramma. pp 136in Wajnberg, E., Hassan, S.A. (Eds). Biological control with egg parasitoids. Wallingford, United Kingdom: CAB International PublicationGoogle Scholar
Schaffner, U. 2001. Host range testing of insects for biological weed control: how can it be better interpreted. Bioscience 51: 951–9CrossRefGoogle Scholar
Schmidt, J.M. 1994. Host recognition and acceptance by Trichogramma. pp 165200in Wajnberg, E., Hassan, S.A. (Eds). Biological control with egg parasitoids. Wallingford, United Kingdom: CAB International PublicationGoogle Scholar
Scott, J.A. 1986. The butterflies of North America. Stanford, California: Stanford University PressCrossRefGoogle Scholar
Simberloff, D., Stiling, P. 1996. How risky is biological control? Ecology 77: 1965–74CrossRefGoogle Scholar
Smith, S.M. 1988. Pattern of attack on spruce budworm egg masses by Trichogramma minutum (Hymenoptera: Trichogrammatidae) released in forest stands. Environmental Entomology 17: 1009–15CrossRefGoogle Scholar
Smith, S.M. 1996. Biological control with Trichogramma: advances, successes and potential for their use. Annual Review of Entomology 41: 375406CrossRefGoogle ScholarPubMed
Smith, S.M., Carrow, J.R., Laing, J.E. (Editors). 1990. Inundative release of the egg parasitoid, Trichogramma minutum (Hymenoptera: Trichogrammatidae), against forest pests such as the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae): the Ontario project. Memoirs of the Entomology Society of Canada 153Google Scholar
Spencer, N. (Editor). 2000. Proceedings of the X International Symposium on Biological Control of Weeds, Bozeman, Montana, 4–9 July 1999. Bozeman, Montana: Montana State UniversityGoogle Scholar
Vinson, S.B. 1998. The general host selection behavior of parasitoid hymenoptera and a comparison of initial strategies utilized by larvaphagous and oophagous species. Biological Control 11: 7996CrossRefGoogle Scholar
Waage, J.K. 2001. Indirect ecological effects in biological control: the challenge and the opportunity. pp 111in Wajnberg, E., Scott, J.K., Quimby, P.C. (Eds), Evaluating indirect ecological effects of biological control. Wallingford, United Kingdom: CAB International PublicationGoogle Scholar
Wajnberg, E., Hassan, S.A. (Editors). 1994. Biological control with egg parasitoids. Wallingford, United Kingdom: CAB International PublicationGoogle Scholar
Wajnberg, E., Scott, J.K., Quimby, P.C. (Editors). 2001. Evaluating indirect ecological effects of biological control. Wallingford, United Kingdom: CAB International PublicationGoogle Scholar
Wilson, F., Huffaker, C.B. 1976. The philosophy, scope and importance of biological control. pp 315in Huffaker, C.B., Messenger, P.S. (Eds), Theory and practice of biological control. New York: Academic PressCrossRefGoogle Scholar