Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-22T18:27:41.326Z Has data issue: false hasContentIssue false

OVERWINTERING OF SOME NORTH TEMPERATE AND ARCTIC CHIRONOMIDAE: II. CHIRONOMID BIOLOGY

Published online by Cambridge University Press:  31 May 2012

H. V. Danks
Affiliation:
Entomology Research Institute, Canada Department of Agriculture, Ottawa

Abstract

Several aspects of overwintering were studied in the larvae of selected species of chironomids living in shallow ponds.In two species (Einfeldia synchrona Oliver and Polypedilum simulons (Townes)) from a pond near Ottawa, Ont. (45° N.), development ceased in mid-November and the gut was subsequently evacuated. A species of Chironomus from another pond did not evacuate the gut although feeding ceased. In the laboratory, larval development of Einfeldia collected at any time of year continued except at low temperatures, but pupation occurred only at long day-lengths. Seasonal changes in horizontal distribution were apparently not primarily related to possible winter effects, but to water depth changes. Larvae of E. synchrona penetrated deeper mud layers during winter (as well as in midsummer); those of P. simulans were always confined to superficial mud layers.The later instars, at least in Chironomini, usually predominated during the winter, but season to season variation was marked. In the arctic all instars except the first were present. Closed winter cocoons were found in several temperate and arctic species. Some were made by sealing an existing tube, others by building a more or less transparent tightly applied cocoon. Inside these cocoons, the larvae were tightly folded in different ways more or less characteristic of the species. At Ottawa, cocoons were usually formed well after ice cover, and partly in response to low temperatures. Larvae showed a lower water content in winter than in summer. In the arctic, larvae were also somewhat dehydrated in winter, but there was in addition a different type of dehydration which resulted in shrivelling.There was no significant ability to resist freezing by inoculation with ice. Freezing tolerance was found in some temperate and all arctic larvae and was temperature- and time-dependent. In temperate areas, freezing-tolerant larvae were nevertheless freezing-susceptible in summer.These studies and previous findings are discussed in relation to winter habitat conditions and the remainder of the life-cycle. Generalizations are compromised by complex inter- and intra-species differences and by habitat variations. Freezing tolerance is widely distributed through the genera of most subfamilies except the Tanypodinae, and is probably most general in the Orthocladiinae. Since there are few specializations of larval physiology which explain such tolerance, the Chironomidae can probably be considered as largely pre-adapted to a rigorous winter environment.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1971

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexejev, N. K. 1955. [About the distribution of chironomid larvae in water bodies.] (In Russian.) Vop. Ikhtiol. 5, pp. 145149.Google Scholar
Alm, G. 1922. Bottenfaunan och Fiskens Biologi i Yxtasjön. (German summary.) Meddn K. LantbrStyr. 236: 1186.Google Scholar
Andersen, F. S. 1946. East Greenland lakes as habitats for chironomid larvae. Studies on the systematics and biology of chironomids II. Meddr Grønland 100: 165.Google Scholar
Anderson, J. F. and Hitchcock, S. W.. 1968. Biology of Chironomus atrella in a tidal cove. Ann. ent. Soc. Am. 61: 15971603.CrossRefGoogle Scholar
Armitage, P. D. 1970. The Tanytarsini (Diptera; Chironomidae) of a shallow woodland lake in South Finland, with special reference to the effect of winter conditions on the larvae. Ann. zool. fenn. 7: 313322.Google Scholar
Baust, J. G. and Miller, L. K.. 1970. Variations in glycerol content and its influences on cold-hardiness in the Alaskan carabid beetle Pterostichus brevicornis. J. Insect Physiol. 16: 979990.CrossRefGoogle ScholarPubMed
Berczik, A. 1962. Die Winter-Chironomidenfauna eines Tränktroges. Opusc. zool. 4: 6365.Google Scholar
Berg, C. O. 1950. Biology of certain Chironomidae reared from Potamogeton. Ecol. Monogr. 20: 83101.CrossRefGoogle Scholar
Berg, K. 1938. Studies on the bottom animals of Esrom Lake. K. danske Vidensk. Selsk. Skr. (math.) 9(8): 1255.Google Scholar
Boldyrewa, N. W. 1930. [wintering of aquatic organisms in ice.] (In Russian, German summary.) Russk. gidrobiol Zh. 9: 4584.Google Scholar
Borodich, N. D. 1962. [On the overwintering of benthic organisms in the bottom substrate of drained hatchery ponds.] (In Russian.) Vop. lkhtiol. 2: 530541.Google Scholar
Borodichova, N. D. 1958. [Wintering of aquatic organisms in the mud of drained ponds.] (In Czech, Russian, and German summaries.) Zivocisna vyroba 3: 243252.Google Scholar
Borutskii, E. V. 1963. [Emergence of Chironomidae (Diptera) imagines from continental water bodies of different climatic belts as a factor of food supply of fishes.] (In Russian, English summary.) Zool. Zh. 42: 233247.Google Scholar
Boyd, W. L. 1959. Limnology of selected arctic lakes in relation to water supply problems. Ecology 40: 4954.CrossRefGoogle Scholar
Brundin, L. 1966. Transantarctic relationships and their significance as evidenced by chironomid midges with a monograph of the subfamilies Podonominae and Aphroteniinae and the Austral Heptagyiae. K. svensk. Vetensk-akad. Handl. 11: 7472.Google Scholar
Buck, J. 1965. Hydration and respiration in chironomid larvae. J. Insect Physiol. 11: 15031516.CrossRefGoogle Scholar
Buscemi, P. A. 1957. First record of Endochironomus subtendens (Townes) larval overwintering cocoons from North America (Diptera; Tendipedidae). Ent. News 68: 157158.Google Scholar
Cole, G. A. 1953. Notes on the vertical distribution of organisms in the profundal sediments of Douglas Lake, Michigan. Am. Midl. Nat. 49: 252256.CrossRefGoogle Scholar
Corbet, P. S. 1964. Temporal patterns of emergence in aquatic insects. Can. Ent. 96: 264279.CrossRefGoogle Scholar
Corbet, P. S. 1966. Die1 periodicities of emergence and oviposition in riverine Trichoptera. Can. Ent. 98: 10251034.CrossRefGoogle Scholar
Crisp, G. and Lloyd, L.. 1954. The community of insects in a patch of woodland mud. Trans. R. ent. Soc. Lond. 105: 269313.CrossRefGoogle Scholar
Curry, L. L. 1965. A survey of environmental requirements for the midge (Diptera: Tendipedidae). IIIrd seminar on Biological problems in water pollution, pp. 127141. U.S. Dep. Health, Education and Welfare.Google Scholar
Czeczuga, B., Bobitynska-Ksok, E., and Niedzwiecki, E.. 1968. On the determination of age structure of the larvae of Tendipedidae (Diptera). Zoologica Pol. 18: 317328.Google Scholar
Danks, H. V. 1971 a. Overwintering of some north temperate and arctic Chironomidae. I. The winter environment. Can. Ent. 103: 589604.CrossRefGoogle Scholar
Danks, H. V. 1971 b. Spring and early summer temperatures in a shallow Arctic pond. Arctic 24: 113123.CrossRefGoogle Scholar
Danks, H. V. 1971 c. Life history and biology of Einfeldia synchrona (Diptera: Chironomidae). Can. Ent. 103: 15971606.CrossRefGoogle Scholar
Decksback, M. L. 1933. Zur Biologie der Chironomiden des PereslawskojeSees. Arch. Hydrobiol. 25: 365382.Google Scholar
Dineen, C. F. 1953. An ecological study of a Minnesota pond. Am. Midl. Nat. 50: 349376.CrossRefGoogle Scholar
Dorris, T. C. 1958. Limnology of the middle Mississippi River and adjacent waters. Lakes on the leveed floodplain. Am. Midl. Nat. 59: 82110.CrossRefGoogle Scholar
Downes, J. A. 1965. Adaptations of insects in the Arctic. A. Rev. Ent. 10: 257274.CrossRefGoogle Scholar
Duffield, R. M. and Nordin, J. H.. 1970. Hibernation and the production of glycerol in the Ichneumonidae. Nature, Lond. 228: 381.CrossRefGoogle ScholarPubMed
Engelmann, W. and Shappirio, D. G.. 1965. Photoperiodic control of the maintenance and termination of larval diapause in Chironomus tentans. Nature, Lond. 207: 548549.CrossRefGoogle Scholar
Fagan, B. E. and Enns, W. R.. 1966. The distribution of aquatic midges in Missouri lagoons. Proc. ent. Soc. Wash. 68: 277289.Google Scholar
Fisher, R. A. 1970. Statistical methods for research workers, 14th ed. Hafner, Darien, Conn.Google Scholar
Ford, J. B. 1959. A study of larval growth, the number of instars, and sexual differentiation in the Chironomidae (Diptera). Proc. R. ent. Soc. Lond. (A) 34: 151160.Google Scholar
Ford, J. B. 1962. The vertical distribution of larval Chironomidae (Dipt.) in the mud of a stream. Hydrobiologia 19: 262272.CrossRefGoogle Scholar
Gostkowski, S. 1935. Die Bodenfauna und das Trockenlegen der Teiche. Verh. int. Verein. theor. angew. Limnol. 7: 423431.Google Scholar
*Greze, I. V. 1953. [Larvae of Tendipedids in Lake Taimyr.] (In Russian.) Trudy irkutsk. gos. Univ. 7: (12).Google Scholar
Grimas, U. 1961. The bottom fauna of natural and impounded lakes in Northern Sweden. (Ankarvattnet and Blasjon). Rep. Inst. Freshwat. Res. Drottningholm 42: 183237.Google Scholar
Hamilton, A. L. 1965. An analysis of a freshwater benthic community with special reference to the Chironomidae. Ph.D. Thesis, Univ. British Columbia, Vancouver.Google Scholar
Harnisch, O. 1922. Zur Kenntnis der Chironomidenfauna austrocknender Gemässer der schlesischen Ebene. Arch. Hydrobiol. 14: 8996.Google Scholar
Heuschele, A. S. 1969. Invertebrate life cycle patterns in the benthos of a floodplain-lake in Minnesota. Ecology 50: 9981011.CrossRefGoogle Scholar
Hilsenhoff, W. L. 1966. The biology of Chironomus plumosus (Diptera: Chironomidae) in lake Winnebago, Wisconsin. Ann. ent. Soc. Am. 59: 465473.CrossRefGoogle Scholar
Hilsenhoff, W. L. 1967. Ecology and population dynamics of Chironomus plumosus (Diptera: Chironomidae) in Lake Winnebago, Wisconsin. Ann. ent. Soc. Am. 60: 11831194.CrossRefGoogle Scholar
Hilsenhoff, W. L. and Narf, R. P.. 1968. Ecology of Chironomidae, Chaoboridae and other benthos in fourteen Wisconsin lakes. Ann. ent. Soc. Am. 61: 11731181.CrossRefGoogle Scholar
Hinton, H. E. 1960. A fly larva that tolerates dehydration and temperatures from —270°C. to + 102°C. Nature, Lond. 188: 336337.CrossRefGoogle Scholar
Hinton, H. E. 1968. Reversible suspension of metabolism and the origin of life. Proc. R. Soc. (B) 171: 4357.Google ScholarPubMed
Hudson, A. and McLintock, J.. 1967. A chemical factor that stimulates oviposition by Culex tarsalis Coquillet (Diptera: Culicidae). Anim. Behav. 15: 336341.CrossRefGoogle ScholarPubMed
Jablonskaja, E. A. 1935. [To the knowledge of fish productivity of the waters. V: Utilization of native food species by the Mirror Carp and valuation from this aspect of the food abundance of the water basin.] (In Russian, German summary). Trudy limnol. Sta. Kosine 20: 99127.Google Scholar
Johannsen, O. A. 1937. Aquatic Diptera. III: Chironomidae: subfamilies Tanypodinae, Diamesiinae and Orthocladiinae. Cornell Univ. agric. Exp. Stn Mem. 205, 84 pp.Google Scholar
Johansen, F. 1911. The insects of the ‘Danmark’ expedition. I: General remarks on the life of insects and arachnids in Northeast Greenland. Meddr Grønland 43: 3554.Google Scholar
Jonasson, P. M. 1955. The efficiency of sieving techniques for sampling freshwater bottom fauna. Oikos 6: 183207.CrossRefGoogle Scholar
Jonasson, P. M. 1961. Population dynamics in Chironomus anthracinus Zett. in the profundal zone of Lake Esrom. Verh. int. Verein. theor. angew. Limnol. 14: 196203.Google Scholar
Jonasson, P. M. 1965. Factors determining population size of Chironomus anthracinus in Lake Esrom. Mitt. int. Verein. theor. angew. Limnol. 13: 139162.Google Scholar
Jonasson, P. M. and Kristiansen, J.. 1967. Primary and secondary production in Lake Esrom. Growth of Chironomus anthracinus in relation to seasonal cycles of phytoplankton and dissolved oxygen. Int. Revue ges. Hydrobiol. Hydrogr. 52: 163217.CrossRefGoogle Scholar
Judd, W. W. 1959. Studies of the Byron Bog in Southwestern Ontario. X: Inquilines and victims of the Pitcher-plant Sarracenia purpurea L. Can. Ent. 91: 171180.CrossRefGoogle Scholar
Kajak, Z. 1958. [An attempt at interpreting the quantitative dynamics of benthic fauna in a chosen environment in the “Konfederatha” pool adjoining the Vistula.] (In Polish.) Ekol. Pol. 6: 205291.Google Scholar
Kajak, Z., Dusoge, K., and Prejs, A.. 1968. Application of the flotation technique to assessment of absolute numbers of benthos. Ekol. Pol. (A) 16: 607620.Google Scholar
Kettisch, J. 1938. Zur Kenntnis der Morphologie und Ökologie der Larve von Cricotopus trifasciatus. Konowia 15(1936): 248263; 16(1937): 153–163, 193–204.Google Scholar
Knab, F. 1905. A chironomid inhabitant of Sarracenia purpurea, Metriocnemus knabi Coq. Jl N.Y. ent. Soc. 13: 6973.Google Scholar
Koskinen, R. 1967. Chironomids (Diptera) from rock pools on islands near Bergen, Norway. Sarsia 29: 233236.CrossRefGoogle Scholar
Leader, J. P. 1962. Tolerance to freezing of hydrated and partially hydrated larvae of Polypedilum (Chironomidae). J. Insect Physiol. 8: 155163.CrossRefGoogle Scholar
Lellak, J. 1969. The regeneration-rate of bottom fauna populations of fish-ponds after wintering or summering. Verh. int. Verein. theor. angew. Limnol. 17: 560569.Google Scholar
Lenz, F. 1923. Vertikalverteilung der Chironomiden im eutrophen See. Verh. int. Verein. theor. angew. Limnol. 1: 144167.Google Scholar
Lenz, F. 1931. Untersuchungen über die Vertikalverteilung der Bodenfauna im Tiefensediment von Seen. Ein neuer Bodengreifer Zerteilungsvorrchtung. Verh. int. Verein. theor. angew. Limnol. 5: 232261.Google Scholar
Lindeberg, B. 1958. A new trap for collecting emerging insects from small rock-pools, with some examples of the results obtained. Suom. hyönt. Aikak. 24: 186191.Google Scholar
Lindeberg, B. 1959. Chironomus lugubris Zett. (Dipt. Chironomidae) from Tvärminne, S.W. Finland. Suom. hyönt. Aikak. 25: 224227.Google Scholar
Lindeman, R. L. 1942 a. Experimental simulation of winter anaerobiosis in a senescent lake. Ecology 23: 113.CrossRefGoogle Scholar
Lindeman, R. L. 1942 b. Seasonal distribution of midge larvae in a senescent lake. Am. Midl. Nat. 27: 428444.CrossRefGoogle Scholar
Lundbeck, J. 1926. Die Bodentierwelt norddeutscher Seen. Arch. Hydrobiol. Suppl. 7: 1473.Google Scholar
Lundbeck, J. 1936. Untersuchungen über die Mengeverteilung der Bodentiere in den Lunzer Seen. Int. Revue ges. Hydrobiol. Hydrogr. 33: 5072.CrossRefGoogle Scholar
Mayenne, V. A. 1933. Zur Frage der Überwinterung von Chironomidenlarven im Boden abgelassener Fischteiche. Arch. Hydrobiol. 25: 657660.Google Scholar
Morduchai-Boltovskoi, F. D. and Shilova, A. J.. 1955. [On the temporary planktonic modus vivendi of Glyptotendipes larvae (Diptera-Tendipedidae)]. (In Russian.) Dokl. Akad. Nauk. SSSR 105: 163165.Google Scholar
Mozley, S. C. 1970. Morphology and Ecology of the larva of Trissocladius grandis (Kieffer) (Diptera: Chironomidae), a common species in the lakes and rivers of Northern Europe. Arch. Hydrobiol. 67: 433451.Google Scholar
Neldner, K. H. and Pennak, R. W.. 1955. Seasonal faunal variations in a Colorado Alpine pond. Am. Midl. Nat. 53: 419430.CrossRefGoogle Scholar
Nordquist, H. 1925. Studien über die Vegetations- und Boden-fauna ablassbarer Teiche. Lunds. Univ. Arsskr. N.F. Avd., 2, 21: 177.Google Scholar
Oliver, D. R. 1968. Adaptations of arctic Chironomidae. Ann. zool. Fenn. 5: 111118.Google Scholar
Oliver, D. R. 1971 a. Life history of the Chironomidae. A. Rev. Ent. 16: 211230.CrossRefGoogle Scholar
Oliver, D. R. 1971 b. Description of Einfeldia synchrona n. sp. (Diptera: Chironomidae). Can. Ent. 103: 15911595.CrossRefGoogle Scholar
Paris, O. H. and Jenner, C. E.. 1959. Photoperiodic control of diapause in the pitcher-plant midge, Metriocnemus knabi. In Withrow, R. B. (Ed.) Photoperiodism and related phenomena in plants and animals. AAAS, Washington, pp. 601624.Google Scholar
Paterson, C. G. and Fernando, C. H.. 1969. The effect of winter drainage on reservoir benthic fauna. Can. J. Zool. 47: 589595.CrossRefGoogle Scholar
Provost, M. W. and Branch, N.. 1958. Food of chironomid larvae in Polk County lakes. Fla Ent. 42: 4962.CrossRefGoogle Scholar
Rempel, J. G. 1936. The life-history and morphology of Chironomus hyperboreus. J. Biol. Bd Can. 2: 209221.CrossRefGoogle Scholar
Sæther, O. A. 1962. Larval overwintering cocoons in Endochironomus tendens Fabricius. Hydrobiologia 20: 377381.CrossRefGoogle Scholar
Salt, R. W. 1936. Studies on the freezing process in insects. Minn. agric. Exp. Stn Tech. Bull. 116, 41 pp.Google Scholar
Salt, R. W. 1953. The influence of food on cold-hardiness of insects. Can. Ent. 85: 261269.CrossRefGoogle Scholar
Salt, R. W. 1961. Principles of insect cold-hardiness. A. Rev. Ent. 6: 5574.CrossRefGoogle Scholar
Salt, R. W. 1963. Delayed inoculative freezing of insects. Can. Ent. 95: 11901202.CrossRefGoogle Scholar
Schmitz, E. H. 1959. Seasonal biotic events in two Colorado alpine tundra ponds. Am. Midl. Nat. 61: 424446.CrossRefGoogle Scholar
Scholander, P. F., Flagg, W., Hock, R. J., and Irving, L.. 1953. Studies on the physiology of frozen plants and animals in the arctic. J. Cell. comp. Physiol. 42 (Suppl. 1): 156.CrossRefGoogle ScholarPubMed
Sernov, S. A. 1927. Über die Überwinterung der Wasserorganismen in Eise und in der gefrorenen Erde nach dem Material von N. W. Boldyreva, P. P. Scharmina und F. D. Schmeleva. Verh. int. Verein. theor. angew. Limnol. 4: 555563.Google Scholar
*Sernov, S. A. 1928. [Wintering of aquatic organisms in ice and frozen soil.] (In Russian.) Russk. gidrobiol. Zh. 7: (12).Google Scholar
Sleigh, M. A. 1953. Survival of a dehydrated chironomid larva (Dipt.) in pure nitrogen. Entomologist 86: 298300.Google Scholar
Sokolova, N. I. 1966. [On the hibernation mode of larvae of Limnochironomus ex gr. nervosus Staeg. (Diptera, Chironornidae).] (In Russian, English summary.) Zool. Zh. 45: 140.Google Scholar
Sømme, L. 1964. Effects of glycerol on cold-hardiness in insects. Can. J. Zool. 42: 87101.CrossRefGoogle Scholar
Spärck, R. 1922. Beiträge zur Kenntnis der Chironomidenmetamorphose I–IV. Ent. Meddr 14: 32109.Google Scholar
Sturgess, B. T. and Goulding, R. L.. 1968. Tolerance of three species of larval Chironomidae to physicochemical stress factors occurring in stabilization lagoons. Ann. ent. Soc. Am. 61: 903906.CrossRefGoogle Scholar
*Szitô, A. 1970. [Observations of and experiments on the overwintering of Chironomidae.] (In Hungarian, German summary.) Allatt. Közl. 57: 157160.Google Scholar
Thienemann, A. 1921. Eine eigenartige Überwinterungsweise bei einer Chironomidenlarve. Zool. Anz. 52: 285288.Google Scholar
Thienemann, A. 1954. Chironomus. Leben, Verbreitung und wirtschaftliche Bedeutung der Chironomiden. Binnengewässer 20: 1834.Google Scholar
Thomas, M. P. 1964. Studies on the vertical distribution of the fauna in the bottom of shallow waters, with special reference to insects. Entomologist 97: 177192.Google Scholar
Timbers, G. E. and Danks, H. V.. 1970. A liquid nitrogen operated chamber for insect supercooling studies. Can. Ent. 102: 9094.CrossRefGoogle Scholar
Vallotton, R. 1969. Contribution à la biologie de la Cécidomyie du pois Contarinia pisi Winn. (Diptera, Cecidomyiidae) avec étude particulière du phénomene de la diapause. Mitt. schweiz. ent. Ges. 42: 241293.Google Scholar
Walshe, B. M. 1951. The feeding habits of certain chironomid larvae (subfamily Tendipedinae). Proc. Zool. Soc. Lond. 121: 6379.CrossRefGoogle Scholar
Wülker, W. 1961. Lebenszyklus und Vertikalverteilung der Chironomide (Dipt.) Sergentia coracina Zett. im Titisee. Verh. int. Verein. theor. angew. Limnol. 44: 962967.Google Scholar