Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T20:04:07.630Z Has data issue: false hasContentIssue false

Occurrence of resistance to insecticides in populations of the obliquebanded leafroller from orchards

Published online by Cambridge University Press:  31 May 2012

D.J. Pree*
Affiliation:
Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, Vineland Station, Ontario, Canada L0R 2E0
K.J. Whitty
Affiliation:
Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, Vineland Station, Ontario, Canada L0R 2E0
M.K. Pogoda
Affiliation:
Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, Vineland Station, Ontario, Canada L0R 2E0
L.A. Bittner
Affiliation:
Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, Vineland Station, Ontario, Canada L0R 2E0
*
1 Author to whom all correspondence should be addressed.

Abstract

The occurrence and distribution of resistance to insecticides in populations of the obliquebanded leafroller, Choristoneura rosaceana (Harris) (Lepidoptera: Tortricidae), from apple, Malus × domestica Borkhauser (Rosaceae), and pear, Pyrus communis L. (Rosaceae), orchards in the various production areas of southern Ontario were assessed in the laboratory and field from 1993 to 1999. Laboratory bioassays were conducted with neonate larvae from the first laboratory generation. Responses of populations from commercial orchards where control failures had occurred or where populations were large or damaging were compared with populations from unsprayed wild hosts. Resistance to azinphosmethyl and to pyrethroids and methomyl was identified in populations from all areas. Resistance levels ranged from 4- to 27-fold for azinphosmethyl, 4- to 8-fold for cypermethrin (a representative pyrethroid), and 3- to 5-fold for methomyl. In the field, deltamethrin was more effective than azinphosmethyl against a population resistant to both insecticides. Resistance to azinphosmethyl was unstable and rapidly declined in a population newly established in the laboratory and not selected with azinphosmethyl. After selection for nine generations, resistance declined only slowly when selection pressure was removed for four generations. This instability may be exploited in the management of resistance, but the possible cross-resistance between azinphosmethyl and pyrethroids needs clarification.

Résumé

De 1993 à 1999, nous avons étudié, en nature et en laboratoire, la résistance aux insecticides chez des populations de la Tordeuse à bandes obliques, Choristoneura rosaceana (Harris) (Lepidoptera : Tortricidae), dans des vergers de pommiers, Malus × domestica Borkhauser (Rosaceae), et de poiriers, Pyrus communis L. (Rosaceae), dans diverses régions de production du sud de l’Ontario; nous avons également examiné la répartition des populations résistantes. Pour les expériences en laboratoire, nous avons utilisé des larves néonates de la première génération obtenue en laboratoire. Les réactions de populations dans des vergers commerciaux où la lutte n’a rien apporté et là où les populations étaient importantes et nuisibles ont été comparées à celles de populations témoins habitant des hôtes non traités. Des populations de toutes les régions se sont montrées résistantes à l’azinphosméthyle, aux pyréthroïdes et au méthomyl. Les degrés de résistance à l’azinphosméthyle étaient de 4 à 27 fois plus élevés que chez les populations témoins, à la cyperméthrine (un pyréthroïde typique), de 4 à 8 fois plus élevés, et au méthomyl, de 3 à 5 fois plus élevé. En nature, la deltaméthrine s’est montrée plus efficace que l’azinphosméthyle contre une population résistante aux deux insecticides. La résistance à l’azinphosméthyle était instable et elle a diminué rapidement chez une population établie depuis peu en laboratoire et n’ayant pas subi de sélection pour la résistance à l’azinphosméthyle. Après une sélection de neuf générations, la résistance a diminué lentement pendant quatre générations, seulement après que la pression de sélection eut été enlevée. Cette instabilité peut être exploitée en gestion de la résistance, mais la résistance croisée à l’azinphosméthyle et aux pyréthroïdes demeure un phénomène obscur.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cahill, M., Byne, F.J., Gorman, K., Denholm, I., Devonshire, A.L. 1995. Pyrethroid and organophosphate resistance in the tobacco whitefly Bemisia tabaci (Homoptera: Aleyrodidae). Bulletin of Entomological Research 85: 181–7CrossRefGoogle Scholar
Carrière, Y., J-P, Deland, Roff, D.A., Vincent, C. 1994. Life-history costs associated with the evolution of insecticide resistance. Proceedings of the Royal Society of London Series B Biological Sciences 258: 3540Google Scholar
Carrière, Y., J-P, Deland, Roff, D.A. 1996. Obliquebanded leafroller (Lepidoptera: Tortricidae) resistance to insecticides: among orchard variation and cross resistance. Journal of Economic Entomology 89: 577–82CrossRefGoogle Scholar
Devonshire, A.L., Moores, G.D. 1982. A carboxylase with broad substrate specificity causes organophosphorus, carbamate and pyrethroid resistance in peach-potato aphids (Myzus persicae). Pesticide Biochemistry and Physiology 18: 235–46CrossRefGoogle Scholar
Lawson, D.S., Reissig, W.H., Smith, C.M. 1997. Response of Larval and adult obliquebanded leafroller (Lepidoptera: Tortricidae) to selected insecticides. Journal of Economic Entomology 90: 1450–7CrossRefGoogle Scholar
Pree, D.J., Roberts, W.P. 1981. Control of the obliquebanded leafroller Choristoneura rosaceana on peaches in Ontario. Proceedings of the Entomological Society of Ontario 112: 712Google Scholar
Pree, D.J., Marshall, D.B., McGarvey, B.D. 1992. Residual toxicity of dicofol, formetanate Hcl, propargite, hexythiazox, and clofentezine to European red mite on peach. Canadian Entomologist 124: 5967CrossRefGoogle Scholar
Reissig, W.H., Stanley, B.H., Hebding, H.E. 1986. Azinphosmethyl resistance and weight-related response of obliquebanded leafroller (Lepidoptera: Tortricidae) larvae to insecticides. Journal of Economic Entomology 79: 329–33CrossRefGoogle Scholar
Robertson, J.L., Priesler, H.K. 1992. Pesticide bioassays with arthropods. Boca Raton: CRC PressGoogle Scholar
Scharf, M.E., Neal, J.J., Bennett, G.W. 1998. Changes of insecticide resistance levels and detoxication enzymes following insecticide selection in the german cockroach Blatella germanica L. Pesticide Biochemistry and Physiology 59: 6779CrossRefGoogle Scholar
Shorey, H.H., Hale, R.L. 1965. Mass rearing of the larvae of nine noctuid species on a simple artificial medium. Journal of Economic Entomology 58: 522–4CrossRefGoogle Scholar
Smirle, M.J., Vincent, C., Zurowski, C.L., Rancourt, B. 1998. Azinphosmethyl resistance in the obliquebanded leafroller, Choristoneura rosaceana: reversion in the absence of selection and relationship to detoxication enzyme activity. Pesticide Biochemistry and physiology 61: 183–9CrossRefGoogle Scholar
Solymar, B. 1999. Integrated pest management for Ontario apple orchards. Publication Number 310. Ontario Ministry of Agriculture, Food, and Rural AffairsGoogle Scholar